Câu hỏi:

15/09/2020 292 Lưu

Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;1;1), B(0;1;2), C(–2;1;4) và mặt phẳng(P): x – y + z + 2 = 0. Tìm điểm N(P) sao cho S=2NA2+NB2+NC2 đạt giá trị nhỏ nhất.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Phương pháp giải: Xét đẳng thức vectơ, đưa về hình chiếu của điểm trên mặt phẳng

Lời giải:

Gọi M(a;b;c) thỏa mãn đẳng thức vectơ 2MA +MB+MC=0

Khi đó S=2NA2+NB2+NC22NA2+NB2+NC2 = 2MN+MA2+MN+MB2+MN+MC2

4MN2+2NM2MA+MB+MC + 2MA2+MB2+MC2

4MN2+2MA2+MB2+MC2

Suy ra Smin ó MNmin ó N là hình chiếu của M trên(P) => MN(P)

Phương trình đường thẳng  MN là 

Mà mmp(P) suy ra t–(1–t)+t+2+2=0 ó t = –1 => N(–1;2;1)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án A

Phương pháp giải:

Dựa vào điều kiện để hàm số đồng biến hoặc nghịch biến trên khoảng xác định

Lời giải:

Ta có y=x3-3mx2+3(2m-1)x+1  R

Hàm số đồng biến trên R R R

Lời giải

Đáp án D

Phương pháp giải:

Đặt ẩn phụ, đưa về hàm một biến, dựa vào giả thiết để tìm điều kiện của biến

Lời giải:

Từ giả thiết chia cả 2 vế cho x2y2 ta được :  

Đặt  ta có 

Khi đó  

Ta có  mà 

nên 

Dấu đẳng thức xảy ra khi Vậy Mmax = 16

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP