Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;1;1), B(0;1;2), C(–2;1;4) và mặt phẳng(P): x – y + z + 2 = 0. Tìm điểm N(P) sao cho đạt giá trị nhỏ nhất.
A.
B.
C.
D.
Quảng cáo
Trả lời:

Đáp án D
Phương pháp giải: Xét đẳng thức vectơ, đưa về hình chiếu của điểm trên mặt phẳng
Lời giải:
Gọi M(a;b;c) thỏa mãn đẳng thức vectơ
Khi đó = =
= +
=
Suy ra Smin ó MNmin ó N là hình chiếu của M trên(P) => MN(P)
Phương trình đường thẳng MN là
Mà mmp(P) suy ra t–(1–t)+t+2+2=0 ó t = –1 => N(–1;2;1)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. m = 1
B. Luôn thỏa mãn với mọi m
C. Không có giá trị m thỏa mãn
D. m ≠ 1
Lời giải
Đáp án A
Phương pháp giải:
Dựa vào điều kiện để hàm số đồng biến hoặc nghịch biến trên khoảng xác định
Lời giải:
Ta có R
Hàm số đồng biến trên R R
R
Lời giải
Đáp án A
Phương pháp giải: Tìm tập xác định, tính giới hạn của hàm số dựa vào định nghĩa tiệm cận đứng, tiệm cận ngang
Lời giải:
Vì hàm số xác định trên khoảng không chứa ∞ nên không tồn tại ∞
Suy ra đồ thị hàm số không có tiệm cận ngang
Xét hệ phương trình Đồ thị hàm số có duy nhất 1 tiệm cận đứng
Câu 3
A. 18
B. 1
C. 9
D. 16
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.