Câu hỏi:

25/11/2020 3,963

Cho tam giác ABC nội tiếp đường tròn (O). Các tia phân giác của các góc B và C cắt nhau tại I và cắt (O) lần lượt tại D và E. Dây DE cắt các cạnh AB và AC lần lượt tại M và N. Chứng minh:

a, Các tam giác AMN, EAIDAI là những tam giác cân

b, Tứ giác AMIN là hình thoi

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a, AMN^=ANM^=12sđED

Suy ra ∆AMN cân tại A. Kéo dài AI cắt đường tròn (O) tại K. Chứng minh tương tự, ta có ∆AIE và ∆DIA lần lượt cân tại E và D

b, Xét ∆AMN cân tại A có AI là phân giác. Suy ra AI ^ MN tại F và MF = FN. Tương tự với DEAI cân tại E, ta có: AF = IF. Vậy tứ giác AMIN là hình hình hành. Mà AI ^ MN Þ ĐPCM

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Từ điểm M nằm ngoài đường tròn (O), kẻ tiếp tuyến MC tại C và cát tuyên MAB (A nằm giữa M và B) và A,B,CÎ(O). Gọi D là điểm chính giữa của cung AB không chứa C, CD cắt AB tại I. Chứng minh:

a, MCD^=BID^

b, MI = MC

Xem đáp án » 12/07/2024 3,156

Câu 2:

Cho tam giác ABC ngoại tiếp đường tròn (I). Các tia AI, BI, CI cắt đường tròn ngoại tiếp tam giác ABC tại D, E, F. Dây EF cắt AB, AC lần lượt tại M và N. Chứng minh:

a, DI = DB

b, AM = AN

Xem đáp án » 25/11/2020 1,562

Câu 3:

Cho đường tròn (O) và một điểm P nằm ngoài (O). Kẻ cát tuyến PAB và tiếp tuyến PT với A,B,T Î (O). Đường phân giác của góc ATB cắt AB tại D. Chứng minh PT = PD

Xem đáp án » 12/07/2024 1,270

Bình luận


Bình luận