Câu hỏi:

25/11/2020 4,263

Cho tam giác ABC nội tiếp đường tròn (O). Các tia phân giác của các góc B và C cắt nhau tại I và cắt (O) lần lượt tại D và E. Dây DE cắt các cạnh AB và AC lần lượt tại M và N. Chứng minh:

a, Các tam giác AMN, EAIDAI là những tam giác cân

b, Tứ giác AMIN là hình thoi

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a, AMN^=ANM^=12sđED

Suy ra ∆AMN cân tại A. Kéo dài AI cắt đường tròn (O) tại K. Chứng minh tương tự, ta có ∆AIE và ∆DIA lần lượt cân tại E và D

b, Xét ∆AMN cân tại A có AI là phân giác. Suy ra AI ^ MN tại F và MF = FN. Tương tự với DEAI cân tại E, ta có: AF = IF. Vậy tứ giác AMIN là hình hình hành. Mà AI ^ MN Þ ĐPCM

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Từ điểm M nằm ngoài đường tròn (O), kẻ tiếp tuyến MC tại C và cát tuyên MAB (A nằm giữa M và B) và A,B,CÎ(O). Gọi D là điểm chính giữa của cung AB không chứa C, CD cắt AB tại I. Chứng minh:

a, MCD^=BID^

b, MI = MC

Xem đáp án » 12/07/2024 3,253

Câu 2:

Cho tam giác ABC ngoại tiếp đường tròn (I). Các tia AI, BI, CI cắt đường tròn ngoại tiếp tam giác ABC tại D, E, F. Dây EF cắt AB, AC lần lượt tại M và N. Chứng minh:

a, DI = DB

b, AM = AN

Xem đáp án » 25/11/2020 1,627

Câu 3:

Cho đường tròn (O) và một điểm P nằm ngoài (O). Kẻ cát tuyến PAB và tiếp tuyến PT với A,B,T Î (O). Đường phân giác của góc ATB cắt AB tại D. Chứng minh PT = PD

Xem đáp án » 12/07/2024 1,311
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua