Câu hỏi:

13/07/2024 8,204

Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O;R). Gọi H là trực tâm của tam giác ABC. Gọi M là trung điểm của BC

a) Chứng minh AH = 2OM

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Gọi F là điểm đối xứng với A qua O AF là đường kính của (O)

Ta có ACF = ABF = 90o (góc nội tiếp chắn nửa đường tròn) AC CF , AB BF

Mà BH AC, CH AB CF // BH, BF // HC

Suy ra BHCF là hình bình hành Trung điểm M của BC cũng là trung điểm của HF.

OM là đường trung bình của ∆ AHF AH = 2OM

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho phương trình x22(m+1)x+m2=0  (1). Tìm m để phương trình có 2 nghiệm x1; x2 thỏa mãn (x1m)2+x2=m+2 

Xem đáp án » 13/07/2024 15,209

Câu 2:

Giải hệ phương trình 1xxy=x2+xy2y2(1)x+3y1+x2+3x=3(2)

Xem đáp án » 13/07/2024 3,405

Câu 3:

Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O;R). Gọi H là trực tâm của tam giác ABC. Gọi M là trung điểm của BC

c) Gọi N là giao điểm của AH với đường tròn (O) (N khác A). Gọi D là điểm bất kì trên cung nhỏ NC của đường tròn tâm (O) (D khác N và C). Gọi E là điểm đối xứng với D qua AC, K là giao điểm của AC và HE. Chứng minh rằng ACH = ADK.

Xem đáp án » 11/07/2024 888

Câu 4:

Cho a, b là 2 số thực dương. Chứng minh rằng (1+a)(1+b)1+ab

Xem đáp án » 11/07/2024 854

Câu 5:

Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O;R). Gọi H là trực tâm của tam giác ABC. Gọi M là trung điểm của BC

b) Dựng hình bình hành AHIO. Gọi J là tâm đường tròn ngoại tiếp tam giác OBC. Chứng minh rằng OI. OJ = R2

Xem đáp án » 13/07/2024 829

Câu 6:

Giải phương trình trên tập số nguyên x2015=y(y+1)(y+2)(y+3)+1 (1)

Xem đáp án » 13/07/2024 743