Câu hỏi:

09/06/2021 3,328

Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, AB = 2a, AD = DC = a; cạnh bên SA = a và vuông góc với đáy. Mặt phẳng (α) qua SD và vuông góc với mặt phẳng (SAC). Tính diện tích S của thiết diện tạo bởi (α) với hình chóp đã cho.

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Gọi E là trung điểm AB.

Suy ra AECD là hình vuông nên DEAC. (1)

Mặt khác SA(ABCD) ⇒ SADE (2)

Từ (1) và (2), suy ra DE(SAC) ⇒ (SDE)(SAC)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABC đáy ABC là tam giác vuông cân với BA = BC = a, SA = a và vuông góc với đáy, cosin góc giữa hai mặt phẳng (SAC) và (SBC) bằng:

Xem đáp án » 22/04/2021 19,966

Câu 2:

Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, AB = 2a, AD = DC = a, SA = a2, SA (ABCD). Tính cosin của góc giữa hai mặt phẳng (SBC) và (SCD).

Xem đáp án » 22/04/2021 14,032

Câu 3:

Cho hình chóp đều S.ABC. Mặt phẳng (α) qua A, song song với BC và vuông góc với mặt phẳng (SBC). Thiết diện tạo bởi (α) với hình chóp đã cho là:

Xem đáp án » 09/06/2021 2,819

Câu 4:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, AB = AC = a. Hình chiếu vuông góc H của S trên mặt đáy (ABC) trùng với tâm đường tròn ngoại tiếp tam giác ABC và SH = a62. Gọi φ là góc giữa hai đường thẳng SB và AC. Mệnh đề nào sau đây đúng?

Xem đáp án » 09/06/2021 2,458

Câu 5:

Cho hình chóp S.ABC có đáy góc (BAC) = 900, BC = 2a, góc (ACB) = 600. Mặt phẳng (SAB) vuông góc với mặt phẳng (ABC). Biết rằng tam giác SAB cân tại S và tam giác SBC vuông tại S. Tính diện tích tam giác SAB.

Xem đáp án » 22/04/2021 2,357

Câu 6:

Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác cân, với AB = AC = a và góc BAC^ = 1200, cạnh bên AA' = a. Gọi I là trung điểm của CC'. Cosin của góc tạo bởi hai mặt phẳng (ABC) và (AB'I)  bằng

Xem đáp án » 09/06/2021 1,802

Bình luận


Bình luận
Vietjack official store