Câu hỏi:

19/08/2022 463

Cho tam giác đều ABC cạnh bằng a, các đường cao là BM và CN. Gọi D là trung điểm cạnh BC. Đường tròn đi qua bốn điểm B, N, M, C là:

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Cho tam giác đều ABC cạnh bằng a, các đường cao là BM và CN. Gọi D là trung điểm cạnh BC (ảnh 1)

Gọi D là trung điểm BC

Xét hai tam giác vuông BNC và BMC có ND, MD là hai đường trung tuyến

DN=DB=DC=DM=BC2 nên bốn điểm B, N, M, C cùng thuộc đường tròn tâm D bán kính BC2

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC cân tại A, đường cao AH = 2cm, BC = 8cm. Đường vuông góc với AC tại C cắt đường thẳng AH ở D

Cho tam giác ABC cân tại A, đường cao AH = 2cm, BC = 8cm. Đường vuông góc với AC tại C (ảnh 1)

Tính đường kính của đường tròn đi qua các điểm A, B, D, C

Xem đáp án » 19/08/2022 19,392

Câu 2:

Cho hình vuông ABCD cạnh 4cm. Gọi M, N lần lượt là trung điểm của AB, BC. Gọi E là giao điểm của AM và DN. Bán kính của đường tròn đi qua bốn điểm A, D, E, M là?

Xem đáp án » 23/04/2021 5,452

Câu 3:

Cho tam giác đều ABC cạnh bằng 3cm, các đường cao là BM và CN. Gọi O là trung điểm cạnh BC. Bốn điểm nào sau đây cùng thuộc một đường tròn. Tính bán kính đường tròn đi qua bốn điểm A, N, G, M với G là giao của BM và CN

Xem đáp án » 19/08/2022 4,542

Câu 4:

Cho hình vuông ABCD. Gọi M, N lần lượt là trung điểm của AB, AC. Gọi E là giao điểm của CM và DN. Tâm của đường tròn đi qua bốn điểm A, D, E, M là?

Xem đáp án » 19/08/2022 2,522

Câu 5:

Cho tam giác ABC cân tại A, đường cao AH = 4cm, BC = 6cm. Đường vuông góc với AC tại C cắt đường thẳng AH ở D

Cho tam giác ABC cân tại A, đường cao AH = 4cm, BC = 6cm. Đường vuông góc với AC tại C (ảnh 1)

Tính đường kính của đường tròn đi qua các điểm A, B, D, C

Xem đáp án » 19/08/2022 2,490

Câu 6:

Cho tam giác ABC cân tại A, đường cao AH = 2cm, BC = 8cm. Đường vuông góc với AC tại C cắt đường thẳng AH ở D

Cho tam giác ABC cân tại A, đường cao AH = 2cm, BC = 8cm. Đường vuông góc với AC tại C (ảnh 1)

Các điểm nào sau đây cùng thuộc một đường tròn?

Xem đáp án » 19/08/2022 1,198

Câu 7:

Cho tam giác đều ABC cạnh bằng a, các đường cao là BM và CN. Gọi D là trung điểm cạnh BC. Gọi G là giao điểm của BM và CN. Xác định vị trí tương đối của điểm G và điểm A với đường tròn đi qua bốn điểm B, N, M, C

Xem đáp án » 19/08/2022 849

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Sách cho 2k7 ôn luyện THPT-vs-DGNL