Câu hỏi:
23/04/2021 5,530Cho đường tròn (O; R) có hai dây AB, CD bằng nhau và vuông góc với nhau tại I. Giả sử IA = 2cm; IB = 4cm. Tổng khoảng cách từ tâm O đến dây AB, CD là:
Quảng cáo
Trả lời:
Đáp án D
Xét đường tròn tâm (O).
Kẻ tại E suy ra E là trung điểm của AB, kẻ tại F.
Vì dây AB = AC nên OE = OF (hai dây bằng nhau cách đều tâm)
Xét tứ giác OEIF có nên OEIF là hình chữ nhật và OE = OF nên OEIF là hình vuông OE = OF = EI
Mà AB = IA + IB = 6cm EB = 3cm EI = EB – IB = 1cm nên OE = OF = 1cm
Vậy tổng khoảng cách từ tâm đến hai dây là AB, CD là 2cm
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D
Do M là trung điểm của CD
Gọi R là bán kính của đường tròn OC = R
Ta có OM = OH – HM = R – 4
Áp dụng định lý Pytago trong tam giác vuông OMC ta có:
R = 10 (cm)
Lời giải
Đáp án A
Kẻ đường thẳng qua O vuông góc với CD tại E và cắt Db tại F thì vì AB // CD
Khi đó E là trung điểm của CD và F là trung điểm của AB (đường kính vuông góc với dây thì đi qua trung điểm dây đó). Nên ED = 6cm; FB = 8cm; OD = OB= 10cm
Áp dụng định lý Pytago cho tam giác vuông OED ta được:
Áp dụng định lý Pytago cho tam giác vuông OFB ta được:
Vậy khoảng cách giữa hai dây là EF = OE + OF = 14cm
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.