Câu hỏi:
19/08/2022 2,433Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A. Kẻ các đường kính AOB; AO’C. Gọi DE là tiếp tuyến chung của hai đường tròn (D (O); E (O’)). Gọi M là giao điểm của BD và CE. Tính diện tích tứ giác ADME biết và OA = 6cm
Quảng cáo
Trả lời:
Đáp án A
Xét (O) có OD = OA OAD cân tại O
Xét (O’) có O’E = O’A O’EA cân tại O’
Mà
Mà (Vì tam giác BAD có cạnh AB là đường kính của (O) và D (O)) nên BD AD . Tương tự ta có .
Nên tứ giác DMEA là hình chữ nhật
Xét tam giác OAD cân tại O có nên DOA đều, suy ra OA = AD = 6cm và
Xét tam giác ADE ta có:
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án C
Vì OH xy, nên H là một điểm cố định và OH không đổi
Gọi giao điểm của AB và OM là E; giao điểm của AB với OH là F
Vì (O; R) và đường tròn đường kính OM cắt nhau tại A; B nên AB OM
Lại có điểm A nằm trên đường tròn đường kính OM nên
Xét OEF và OHM có chung và nên (g – g)
Suy ra
Xét MAO vuông tại A có AE là đường cao nên theo hệ thức lượng trong tam giác vuông ta có
Do OH không đổi nên OF cũng không đổi
Vậy F là một điểm cố định hay AB luôn đi qua một điểm cố định là giao của AB và OH
Lời giải
Đáp án B
Xét (O) có OD = OA OAD cân tại O
Xét (O’) có O’E = O’E O’EB cân tại O’
Mà
ADE vuông tại A
Mà (vì tam giác BAD có cạnh AB là đường kính của (O) và D (O) nên BD AD
Tương tự ta có
Nên tứ giác DMEA là hình chữ nhật
Xét tam giác OAD cân tại O có nên DOA đều, suy ra OA = AD = 8cm và
. Xét tam giác ADE có