Câu hỏi:
26/04/2021 10,996Cho đường tròn (O; 3cm), lấy điểm A sao cho OA = 6cm. Từ A vẽ tiếp tuyến AB, AC đến đường tròn (O) (B, C là tiếp điểm). Chu vi tam giác ABC là:
Quảng cáo
Trả lời:
Đáp án B
Gọi D là giao điểm của BC và OA
Có OC AC (tính chất tiếp tuyến của đường tròn)
Xét OAC vuông tại C, ta có: (Pytago)
Mà AC = AB (tính chất hai tiếp tuyến cắt nhau) nên
Vì AC = AB; OB = OC nên OA là đường trung trực của BC hay OA BC tại D và D là trung điểm của CB
Xét tam giác vuông OCA có CD là đường cao nên:
Vậy chu vi tam giác ABC là:
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án C
Theo tính chất hai tiếp tuyến cắt nhau: AC = CN và BD = DM
Chu vi hình thang ABDC là:
= AC + AB + BD + CD = CM + AB + DM + CD = AB + 2CD
Mà OM CD OM AB
Vậy chu vi nhỏ nhất của hình thang ABDC là 3AB khi OM AB
Lời giải
Đáp án B
Vì I là trung điểm CD
Nên I là tâm của đường tròn đường kính CD
Theo tính chất hai tiếp tuyến cắt nhau: AC = CM và BD = DM
Xét tứ giác ABDC có: AC // BD ABDC là hình thang
Suy ra IO là đường trung bình của hình thang ABDC
IO // AC // BD mà AC AB IO AB (1)
Từ (1) và (2) suy ra đường tròn đường kính CD tiếp xúc với AB
Vậy A, C, D đúng, B sai
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Tổng hợp các bài toán thực tế ôn thi vào 10 Toán 9 có đáp án (Phần 2: Hình học)
12 bài tập Một số bài toán thực tế liên quan đến bất đẳng thức có lời giải
Chuyên đề 8: Hình học (có đáp án)
12 bài tập Một số bài toán thực tế liên quan đến bất phương trình bậc nhất một ẩn có lời giải
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận