Câu hỏi:

26/04/2021 3,757

Cho đường tròn (O; r) nội tiếp tam giác ABC tiếp xúc với BC tại D. Vẽ đường kính DE; kéo dài AE cắt BC tại M. chọn câu đúng nhất

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Vẽ tiếp tuyến tại E của đường tròn (O) cắt AB, AC lần lượt tại H, K. Ta có

ED HK, ED  BC  HK // BC

Gọi N là tiếp điểm của đường tròn (O) tiếp xúc với AC

OK, OC là hai tia phân giác của hai góc kề bù EON và NOD (tính chất trung tuyến) KOC^ = 90o

+ Xét OEK và CDO có OEC^=CDO^(= 90o), OKE^=COD^ (cùng phụ với EOK^). Do đó OEK  CDO EKOD=OECD hay EKr=rCD

Tương tự cũng có HEr=rBD. Do vậy EKHE=BDCDEKEK+HE=BDBD+CD hay EKHK=BDBC(1)

+ Trong ABM có HE // BM, áp dụng hệ quả của định lý Ta-lét trong tam giác ta có: HEBM=AEAM. Tương tự có EKCM=AEAM

Do đó: HEBM=EKCMEKCM=EK+HECM+BM hay EKCM=HKBCEKHK=CMBC (2)

Từ (1) và (2) cho ta BD = CM

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Gọi O là tâm đường tròn nội tiếp tam giác đều ABC. Vậy O là giao điểm 3 đường phân giác của tam giác mà tam giác ABC đều nên O là giao điểm 3 đường trung tuyến của tam giác ABC. Vậy bán kính đường tròn (O) là OG với BG là trung tuyến của tam giác ABC

Vì tam giác ABC đều nên ta tính được:

BG = BC2CG2=8242=43 cm OG = BG3=433 cm

Câu 2

Lời giải

Đáp án C

Cho tam giác ABC nội tiếp đường tròn (O; R), AH là đường cao (H thuộc BC). chọn câu đúng (ảnh 1)

Vẽ đường kính AD của đường tròn (O), suy ra ACD^ = 90o (vì tam giác ACD có ba đỉnh thuộc đường tròn và AD là đường kính)

Xét HBA và CDA có: AHB^=ACD^ (= 90o); HBA^=CDA^ (góc nội tiếp cùng chắn)

Do đó HBA  CDAAHAC=ABAD AB. AC = AD. AH

Mà AD = 2R, do đó AB. AC = 2R. AH

 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP