Câu hỏi:

14/08/2022 592

Tìm y trong hình vẽ dưới đây.

Tìm y trong hình vẽ dưới đây.  A. 17,85  B. 10,75  C. 18,75  D. 15,87 (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Áp dụng định lí Pytago trong tam giác vuông IAD ta có:

AI2+AD2=ID242+32 =ID2ID2=25ID=5

Xét 2 tam giác vuông IAD và CBI có:

IAD^=IBC^=90°

IDA^=CIB^ (gt)

=> ΔIAD ~ ΔCBI (g  - g)

IACB=IDCI415=5yy=15.54=18,75

Vậy y = 18,75.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Ta mô tả vị trí cây, cọc và người như hình vẽ bên.

Xét ΔBFE và ΔBNM ta có:

Góc B chung

BEF^=BMN^ (vì EF // MN, cặp góc đồng vị bằng nhau)

=> ΔBFE ~ ΔBNM (g - g)

BFBN=FENMBFBF+FN=FENMBFBF+0,64=1,652,45

 1,65(BF + 0,64) = 2,45.BF

 BF = 1,32m

Xét ΔBFE và ΔBCA có:

Góc B chung

BEF^=BAC^ (vì EF // AC, cặp góc đồng vị bằng nhau)

=> ΔBFE ~ ΔBCA (g - g)

BFBC=FECABFBF+FN+NC=FECA1,321,32+0,64+1,36=1,65CA

=> CA = 4,15m

Vậy cây cao đúng bằng độ dài của đoạn CA hay cây cao 4,15m.

Lời giải

Đáp án A

Gọi I, K lần lượt là hình chiếu của H lên AB và AC.

HIA^=HKA^=90°

Xét tứ giác AIHK có: IAK^=HIA^=HKA^=90°

 => Tứ giác AIHK là hình chữ nhật (dhnb)

+) Xét ΔAIK và ΔIAH ta có:

AI chung

AK = IH (theo tính chất của hình chữ nhật)

AH = IK (theo tính chất của hình chữ nhật)

=> ΔAIK = ΔIAH (c - c - c) (1)

Xét 2 tam giác vuông ΔIAH và ΔHAB có:

AIH^=AHB^=90°

Góc A chung

=> ΔIAH ~ ΔHAB (g - g) (2)

Xét 2 tam giác vuông ΔHAB và ΔACB có:

AHB^=BAC^=90°

Góc B chung

=> ΔHAB ~ ΔACB (g - g) (3)

Từ (1), (2) và (3) ta có: ΔAIK ~ ΔACB

Câu 3

Cho ΔA’B’C’ ~ ΔABC. Biết SABC=2549SABC và hiệu 2 chu vi của 2 tam giác là 16m. Tính chu vi mỗi tam giác?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho tam giác MNP vuông ở M và có đường cao MK.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay