Câu hỏi:

12/10/2019 3,700

Cho X={1;2;3;4;5;6;7;8;9}. Từ X lập được bao nhiêu số sao cho chẵn và có 3 chữ số khác nhau

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án : D

Do số cần lập là số chẵn nên có 4 cách chọn chữ sỗ c từ tập X; c {2;4;6;8}.

Ứng với mỗi cách chọn c ta có 8 cách chọn a- vì a khác c.

Khi đó; có 7 cách chọn b vì b khác a; b khác c.

Vậy từ quy tắc nhân có 4.8.7=224 số thỏa mãn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a: Số cách xếp A, F ngồi ở hai ghế đầu là : 2!=2 cách.

Số cách xếp B;C;D;E vào bốn ghế còn lại là hoán vị của 4 phần tử nên có 4!=24 cách.

Số cách xếp thỏa yêu cầu bài toán: 2.24=48 cách.

Chọn A.

Lời giải

* Số cách xếp 6  người vào 6 ghế là 6!.

 * Ta tính số cách xếp sao cho A và F ngồi cạnh nhau:

Xem AF là một phần tử X, ta có 5!=120  cách xếp 5 người X;B;C;D;E.

Khi hoán vị A; F ta có thêm được một cách xếp.

Vậy có 2.120=240 cách xếp để A và F ngồi cạnh nhau.

* Do đó, số cách xếp để A  và F không ngồi cạnh nhau là;  

             6! - 240=480 cách.

Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP