Câu hỏi:

24/05/2021 802

Trong mặt phẳng với hệ trục tọa độ Oxy, cho hai đường thẳng d1: x + y + 5 = 0, d2: x + 2y – 7 = 0 và tam giác ABC có A (2; 3), trọng tâm là G (2; 0), điểm B thuộc d1 và điểm C thuộc d2. Viết phương trình đường tròn ngoại tiếp tam giác ABC

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Điểm B thuộc d1: x + y + 5 = 0 nên ta giả sử B (b; −b − 5)

Điểm C thuộc d2: x + 2y −7 = 0 nên ta giả sử C (7 − 2c, c)

Vì tam giác ABC có A (2; 3), trọng tâm là G (2; 0) nên ta có hệ phương trình

- Giả sử phương trình đường tròn cần lập có dạng x2 + y2 + 2ax + 2by + c = 0. Vì đường tròn qua 3 điểm A (2; 3), B (−1; −4) và C (5; 1) nên ta có hệ phương trình:

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm tọa độ tâm I của đường tròn đi qua ba điểm A (0; 4), B (2; 4), C (4; 0)

Xem đáp án » 24/05/2021 5,596

Câu 2:

Cho phương trình x2+y2-2x+2my+10=0 (1). Có bao nhiêu giá trị m nguyên dương không vượt quá 10 để (1) là phương trình của đường tròn?

Xem đáp án » 24/05/2021 4,228

Câu 3:

Đường thẳng d: 4x + 3y + m = 0 tiếp xúc với đường tròn (C): x2 + y2 = 1 khi

Xem đáp án » 24/05/2021 2,042

Câu 4:

Cho phương trình x2+y2-2mx-4m-2y+6-m=0 (1). Tìm điều kiện của m để (1) là phương trình đường tròn?

Xem đáp án » 24/05/2021 1,970

Câu 5:

Trong mặt phẳng Oxy cho đường thẳng (d): 3x − 4y + 5 = 0 và đường tròn (C): x2+y2+2x-6y+9=0. Tìm những điểm M thuộc (C) và N thuộc (d) sao cho MN có độ dài nhỏ nhất

Xem đáp án » 24/05/2021 1,817

Câu 6:

Cho phương trình x2+y2-2m+1x+4y-1=0. Với giá trị nào của m  để  (1) là phương trình đường tròn có bán kính nhỏ nhất?

Xem đáp án » 24/05/2021 1,218

Câu 7:

Phương trình đường tròn (C) đi qua hai điểm A (0; 1), B (1; 0) và có tâm nằm trên đường thẳng: x + y + 2 = 0 là

Xem đáp án » 24/05/2021 1,021

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn