Cho tam giác ABC cân tại A, đường trung tuyến AM. Gọi I là trung điểm của AC. K là điểm đối xứng với M qua điểm I. Tìm điều kiện của tam giác ABC để tứ giác AMCK là hình vuông.
A. Tam giác ABC vuông cân tại A
B. Tam giác ABC vuông cân tại B
C. Tam giác ABC đều
D. Tam giác ABC vuông cân tại C
Quảng cáo
Trả lời:

Hình chữ nhật AMCK là hình vuông => AM = MC
Mà MC = BC (gt) nên AM = MC => AM = BC
Do AM là đường trung tuyến của tam giác ABC nên AM = BC
=> tam giác ABC vuông tại A.
Vậy nếu tam giác ABC vuông cận tại A thì tứ giác AMCK là hình vuông
Đáp án cần chọn là: A
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. Hình chữ nhật
B. Hình thoi
C. Hình bình hành
D. Hình vuông
Lời giải
+ Vì ABCD là hình vuông nên AB = BC = CD = DA (tính chất).
Mà AE = BF = CG = DH (gt) nên AB – AE = BC – BF = CD – CG = DA – DH hay DG = CF = EB = AH
Từ đó suy ra ΔAHE = ΔDGH = ΔCFG = ΔEBF (c-g-c) nên HG = GF = HE = EF.
Vì HG = GF = HE = EF nên tứ giác EFGH là hình thoi.
Câu 2
A. Hình chữ nhật
B. Hình thoi
C. Hình bình hành
D. Hình vuông
Lời giải
+ Tam giác ABC cân tại A, AM là đường trung tuyến nên AM đồng thời là đường cao.
=> AM ⊥ BC => = 900
Xét tứ giác AMCK có:
Suy ra tứ giác AMCK là hình bình hành (dhnb)
Lại có = 900 (cmt) nên hình bình hành AMCK là hình chữ nhật.
+ Ta có: AK // MC (do AMCK là hình chữ nhật), M Є BC (gt) => AK // BM
Mà BM = MC (do AM là trung tuyến), AK = MC (do AMCK là hình chữ nhật) nên AK – BM (tính chất bắc cầu)
Xét tứ giác ABMK có:
Suy ra tứ giác ABMK là hình bình hành.
Đáp án cần chọn là: C
Câu 3
A. AB = AC
B. AB = AC
C. AC = AB
D. = 600
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. 32
B. 16
C. 24
D. 18
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. M trên đường chéo AC
B. M thuộc cạnh DC
C. M thuộc đường chéo BD
D. M tùy ý nằm trong hình vuông ABCD
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.