Câu hỏi:

31/05/2021 18,783

Cho tam giác ABC cân tại A, đường trung tuyến AM. Gọi I là trung điểm của AC. K là điểm đối xứng với M qua điểm I. Tìm điều kiện của tam giác ABC để tứ giác AMCK là hình vuông.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hình chữ nhật AMCK là hình vuông => AM = MC

Mà MC = 12BC (gt) nên AM = MC => AM = 12BC

Do AM là đường trung tuyến của tam giác ABC nên AM =  BC

=> tam giác ABC vuông tại A.

Vậy nếu tam giác ABC vuông cận tại A thì tứ giác AMCK là hình vuông

Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

+ Vì ABCD là hình vuông nên AB = BC = CD = DA (tính chất).

Mà AE = BF = CG = DH (gt) nên AB – AE = BC – BF = CD – CG = DA – DH hay DG = CF = EB = AH

Từ đó suy ra ΔAHE = ΔDGH = ΔCFG = ΔEBF (c-g-c) nên HG = GF = HE = EF.

Vì HG = GF = HE = EF nên tứ giác EFGH là hình thoi.

Lời giải

+ Tam giác ABC cân tại A, AM là đường trung tuyến nên AM đồng thời là đường cao.

=> AM ⊥ BC => AMC^ = 900

Xét tứ giác AMCK có: AI=IC (gt)MI=IK(gt)ACMK=I(gt)

Suy ra tứ giác AMCK là hình bình hành (dhnb)

Lại có AMC^ = 900 (cmt) nên hình bình hành AMCK là hình chữ nhật.

+ Ta có: AK // MC (do AMCK là hình chữ nhật), M Є BC (gt) => AK // BM

Mà BM = MC (do AM là trung tuyến), AK = MC (do AMCK là hình chữ nhật) nên AK – BM (tính chất bắc cầu)

Xét tứ giác ABMK có: AK=BM (cmt)AK//BM(cmt)

Suy ra tứ giác ABMK là hình bình hành.

Đáp án cần chọn là: C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP