Câu hỏi:

11/09/2019 39,647 Lưu

Hai nhóm người cần mua nền nhà, nhóm thứ nhất có 2 người và họ muốn mua 2 nền kề nhau, nhóm thứ hai có 3 người và họ muốn mua 3 nền kề nhau. Họ tìm được một lô đất chia thành 7 nền đang rao bán (các nền như nhau và chưa có người mua). Tính số cách chọn nền của mỗi người thỏa yêu cầu trên

A.144

B. 125

C.140

D.132

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Xem lô đất có 4 vị trí gồm 2 vị trí 1 nền, 1 vị trí 2 nền và 1 vị trí 3 nền.

 Bước 1: nhóm thứ nhất chọn 1 vị trí cho 2 nền có 4 cách và mỗi cách có 2!=2 cách chọn nền cho mỗi người. Suy ra có 4.2 = 8 cách chọn nền.

Bước 2: nhóm thứ hai chọn 1 trong 3 vị trí còn lại cho 3 nền có 3 cách và mỗi cách có 3!= 6  cách chọn nền cho mỗi người.

Suy ra có 3.6=18 cách chọn nền.

Vậy có 8.18=144 cách chọn nền cho mỗi người

Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương án 1: Xét các số được lập có 3 chữ số lẻ, 3 chữ số chẵn trong đó không có số 0.

+ Bước 1: Chọn 3 số lẻ, có  cách.

+ Bước 2: Chọn 3 số chẵn, có   cách.

+ Bước 3: Xếp thứ tự 6 chữ số vừa lấy theo hàng ngang, có 6! = 720 cách.

Theo quy tắc nhân thì số các số trong phương án này là: 10.4.720 = 28800 số.

Phương án 2: Xét các số được lập có 3 chữ số lẻ, 3 chữ số chẵn trong đó có số 0.

Tương tự như trên, số các số tự nhiên trong phương án này là:  số.

Vậy số các số tự nhiên thỏa mãn yêu cầu là: 28800 + 36000 = 64800 số.

Chọn B.

Lời giải

Gọi  là số cần lập.

Vì tổng của ba số đầu nhỏ hơn tổng của  ba số cuối 1 đơn  vị nên:

   (1)

 và đôi một khác nhau nên

a1 +a2+ a3 + a4+a5+a6= 1 + 2 + 3 + 4 + 5 + 6 =21             (2)

Từ (1), (2) suy ra: 1 + a2 + a3 = 10  

Phương trình này có các bộ nghiệm là: ( a­1 , a2  , a3 ) = (1,3,6); (1,4,5); (2,3,5)

Với mỗi bộ ta có 3!.3!=36  số.

Vậy có cả 3.36=108  số cần lập.

Chọn C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP