Câu hỏi:
11/09/2019 11,647Một lớp có 33 học sinh, trong đó có 7 nữ. Cần chia lớp thành 3 tổ, tổ 1 có 10 học sinh, tổ 2 có 11 học sinh, tổ 3 có 12 học sinh sao cho trong mỗi tổ có ít nhất 2 học sinh nữ. Hỏi có bao nhiêu cách chia như vậy?
Câu hỏi trong đề: 100 câu trắc nghiệm Tổ hợp - Xác suất nâng cao !!
Quảng cáo
Trả lời:
Số cách chia lớp thành 3 tổ thỏa yêu cầu có 3 trường hợp
* TH1: Tổ 1 có 3 nữ, 7 nam có cách chọn
Tổ 2 có 2 nữ, 9 nam có cách chọn
Tổ 3 có 2 nữ, 10 nam có cách chọn
Vậy có cách chia thành 3 tổ trong TH này
* TH2: Tổ 2 có 3 nữ và hai tổ còn lại có 2 nữ, tương tự tính được cách chia.
* TH3: Tổ 3 có 3 nữ và hai tổ còn lại có 2 nữ, tương tự tính được cách chia.
Vậy có tất cả cách chia
Chọn D.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương án 1: Xét các số được lập có 3 chữ số lẻ, 3 chữ số chẵn trong đó không có số 0.
+ Bước 1: Chọn 3 số lẻ, có cách.
+ Bước 2: Chọn 3 số chẵn, có cách.
+ Bước 3: Xếp thứ tự 6 chữ số vừa lấy theo hàng ngang, có 6! = 720 cách.
Theo quy tắc nhân thì số các số trong phương án này là: 10.4.720 = 28800 số.
Phương án 2: Xét các số được lập có 3 chữ số lẻ, 3 chữ số chẵn trong đó có số 0.
Tương tự như trên, số các số tự nhiên trong phương án này là: số.
Vậy số các số tự nhiên thỏa mãn yêu cầu là: 28800 + 36000 = 64800 số.
Chọn B.
Lời giải
Gọi là số cần lập.
Vì tổng của ba số đầu nhỏ hơn tổng của ba số cuối 1 đơn vị nên:
(1)
Mà và đôi một khác nhau nên
= 1 + 2 + 3 + 4 + 5 + 6 =21 (2)
Từ (1), (2) suy ra: a1 + a2 + a3 = 10
Phương trình này có các bộ nghiệm là: ( a1 , a2 , a3 ) = (1,3,6); (1,4,5); (2,3,5)
Với mỗi bộ ta có 3!.3!=36 số.
Vậy có cả 3.36=108 số cần lập.
Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.