Câu hỏi:
23/04/2022 228Biết rằng đồ thị hàm số cắt trục hoành tại 4 điểm phân biệt có hoành độ là , , , . Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để ?
Quảng cáo
Trả lời:
Phương pháp giải:
- Xét phương trình hoành độ giao điểm.
- Đặt ẩn phụ , đưa phương trình về dạng phương trình bậc hai ẩn t.
- Để phương trình hoành độ giao điểm có 4 nghiệm phân biệt thỏa mãn yêu cầu bài toán thì phương trình bậc hai ẩn t phải có 2 nghiệm dương phân biệt khác 1.
- Giả sử phương trình bậc hai ẩn t có 2 nghiệm dương phân biệt , suy ra 4 nghiệm x, thay vào giả thiết, sau đó áp dụng định lí Vi-ét và giải bất phương trình.
Giải chi tiết:
Ta có:
Xét phương trình hoành độ giao điểm: .
Đặt , phương trình đã cho trở thành: .
Để phương trình (*) có 4 nghiệm phân biệt thỏa mãn ycbt thì phương trình (**) phải có 2 nghiệm dương phân biệt khác 1.
Khi đó giả sử phương trình (**) có 2 nghiệm phân biệt thì phương trình (*) có 4 nghiệm phân biệt ; .
Theo bài ra ta có:
Áp dụng định lí Vi-ét ta có: .
Kết hợp điều kiện ta có . Mà .
Vậy có 6 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Đáp án C
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương pháp giải:
Ta có hình vẽ, khi đó chiến sĩ ở vị trí A, mục tiêu ở vị trí C.
Quãng đường chiến sĩ phải bơi là AD, quãng đường chiến sĩ phải chạy bộ là DC.
Ta có:
Đặt
⇒ Quãng đường chiến sĩ phải bơi là:
Quãng đường chiến sĩ phải chạy bộ là:
⇒ Thời gian chiến sĩ đến được mục tiêu là:
Tìm x để đạt rồi suy ra quãng đường chiễn sĩ phải bơi.
Giải chi tiết:
Gọi vận tốc của chiến sĩ khi bơi là
⇒ Vận tốc của chiến sĩ khi chạy bộ là:
Ta có hình vẽ, khi đó chiến sĩ ở vị trí A, mục tiêu ở vị trí C.
Quãng đường chiến sĩ phải bơi là AD, quãng đường chiến sĩ phải chạy bộ là DC.
Ta có:
Đặt
⇒ Quãng đường chiến sĩ phải bơi là:
Quãng đường chiến sĩ phải chạy bộ là:
⇒ Thời gian chiến sĩ đến được mục tiêu là:
Xét hàm số: trên ta có:
⇒ Quãng đường bơi mà chiến sĩ phải bơi để đến được mục tiêu nhanh nhất là:
Lời giải
Phương pháp giải:
Xác định các điểm mà tại đó hàm số liên tục và qua đó đạo hàm đổi dấu.
Giải chi tiết:
Dựa vào BXD đạo hàm ta thấy:
Hàm số liên tục tại các điểm (do hàm số liên tục trên ) và qua các điểm đó đạo hàm đều đổi dấu.
Vậy hàm số có 4 điểm cực trị.
Đáp án A
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
45 bài tập Xác suất có lời giải