Câu hỏi:

25/04/2022 3,949 Lưu

Cho hàm số f(x) liên tục trên , có bảng biến thiên như hình vẽ dưới đây:

 (VD): Cho hàm số liên tục trên , có bảng biến thiên như hình vẽ dưới đây:Đặt (m là tham số). Tìm tất cả các giá trị của m để hàm số có đúng 3 điểm cực trị.  (ảnh 3)

Đặt g(x)=|m+f(x+1)|(m là tham số). Tìm tất cả các giá trị của m để hàm số y=g(x) có đúng 3 điểm cực trị.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Dựa vào BBT ta thấy f'(x)=0[x=x1x=x2.

Đặt h(x)=m+f(x+1) ta có \[h'\left( x \right) = f'\left( {x + 1} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x + 1 = {x_1}}\\{x + 1 = {x_2}}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = {x_1} - 1}\\{x = {x_2} - 1}\end{array}} \right.\], do đó hàm số h(x)=m+f(x+1)có 2 điểm cực trị.

Suy ra để hàm số g(x)=|h(x)|=|m+f(x+1)| có đúng 3 điểm cực trị thì phương trình m+f(x+1)=0 phải có nghiệm bội lẻ duy nhất.

Ta có: m+f(x+1)=0f(x+1)=m, dựa vào BBT ta thấy đường thẳng  (VD): Cho hàm số liên tục trên , có bảng biến thiên như hình vẽ dưới đây:Đặt (m là tham số). Tìm tất cả các giá trị của m để hàm số có đúng 3 điểm cực trị.  (ảnh 15)cắt qua (không tính điểm tiếp xúc) đồ thị hàm số y=f(x+1) tại 1 điểm duy nhất khi và chỉ khi [m1m3[m1m3.

Đáp án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

 (VD): Cho hình lăng trụ đều ABC.A’B’C’, tất cả các cạnh có độ dài bằng a. Gọi M là trung điểm của cạnh BC. Tính khoảng cách giữa hai đường thẳng AM và BC’.  (ảnh 4)

Gọi N là trung điểm của CC’ MN là đường trung bình của tam giác BCC’.

\[ \Rightarrow MN//BC' \Rightarrow BC'//\left( {AMN} \right) \supset AM\].

Khi đó ta có d(AM;BC')=d(BC';(AMN))=d(B;(AMN)).

Ta có: BC(AMN)=Md(B;(AMN))d(C;(AMN))=BMCM=1d(B;(AMN))=d(C;(AMN)).

Trong (BCC’B’) kẻ CHMN(HMN) ta có:

{AMCMAMCNAM(BCC'B')AMCH

{CHAMCHMNCH(AMN)d(C;(AMN))=CH

d(AM;BC')=CH.

Áp dụng hệ thức lượng trong tam giác vuông CMN có: CH=CM.CNCM2+CN2=a2.a2a24+a24=a24.

Vậy d(AM;BC')=a24.

Đáp án D.

Lời giải

Ta có:

a+b+log25c+log23=log645a+b+log25c+log23=log245log26

a+b+log25c+log23=log2(32.5)log2(2.3)a+b+log25c+log23=2log23+log251+log23

a+b+log25c+log23=2+2log232+log251+log23a+b+log25c+log23=2+2+log251+log23

Đồng nhất hệ số ta có a=2,b=2,c=1.

Vậy  a+b+c=2+(2)+1=1.

Đáp án A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP