Câu hỏi:

25/04/2022 373

Trong không gian tọa độ Oxyz, cho điểm M(1;2;3). Hình chiếu của M tương ứng lên Ox,Oy,Oz,(Oyz),(Ozx),(Oxy)A,B,C,D,E,F. Gọi P và Q tương ứng là giao điểm của đường thẳng OM với các mặt phẳng (ABC)(DEF). Độ dài PQ bằng:

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Theo bài ra ta có:

A(1;0;0), B(0;2;0), C(0;0;-3), D(0;2;-3), E(1;0;-3), F(1;2;0).

Gọi P và Q tương ứng là giao điểm của đường thẳng OM với các mặt phẳng (ABC) và (DEF). Độ dài PQ bằng:

+ Ta có: OM=(1;2;3) là 1 VTCP của đường thẳng OM, nên phương trình đường thẳng OM là {x=ty=2tz=3t.

+ Phương trình mặt phẳng (ABC) là x1+y2+z3=16x+3y2z6=0.

Gọi OM(ABC)=P(p;2p;3p) , ta có P(ABC) nên:

6p+3.2p2.(3p)6=0p=13

P(13;23;1).

+ Ta có: DE=(1;2;0);DF=(1;0;3)[DE;DF]=(6;3;2) là 1 VTPT của (DEF).

⇒ Phương trình mặt phẳng (DEF) là: 6x3(y2)+2(z+3)=06x3y+2z+12=0.

Gọi OM(DEF)=Q(q;2q;3q) , ta có Q(DEF) nên:

\[ - 6q - 3.2q + 2\left( { - 3q} \right) + 12 = 0 \Leftrightarrow q = \frac{2}{3}\]

Q(23;43;2).

Vậy PQ=(13)2+(23)2+(1)2=143.

Đáp án D.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho các số nguyên a, b, c thỏa mãn a+b+log25c+log23=log645. Tổng a+b+c bằng:

Xem đáp án » 25/04/2022 8,434

Câu 2:

Cho biết a=log25b=log57. Tính log53498 theo a và b.

Xem đáp án » 25/04/2022 7,271

Câu 3:

Cho phương trình log12(2xm)+log2(3x)=0, m là tham số. Hỏi có bao nhiêu giá trị nguyên dương của m để phương trình có nghiệm?

Xem đáp án » 25/04/2022 7,142

Câu 4:

Cho hình lăng trụ đều ABC.A’B’C’, tất cả các cạnh có độ dài bằng a. Gọi M là trung điểm của cạnh BC. Tính khoảng cách giữa hai đường thẳng AM và BC’.

Xem đáp án » 25/04/2022 7,090

Câu 5:

Tìm số nghiệm của phương trình sin(cosx)=0 trên đoạn [1;2021].

Xem đáp án » 25/04/2022 6,472

Câu 6:

Cho hàm số y=f(x) có đạo hàm thỏa mãn f'(1)=3. Khi đó limx1f(x)f(1)x1 bằng:

Xem đáp án » 25/04/2022 4,927

Câu 7:

Hàm số nào sau đây mà đồ thị có dạng như hình vẽ bên dưới?

 (TH): Hàm số nào sau đây mà đồ thị có dạng như hình vẽ bên dưới? (ảnh 1)

Xem đáp án » 25/04/2022 4,526
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua