Câu hỏi:
25/04/2022 391Trong không gian tọa độ , cho điểm . Hình chiếu của M tương ứng lên là . Gọi P và Q tương ứng là giao điểm của đường thẳng OM với các mặt phẳng và . Độ dài PQ bằng:
Quảng cáo
Trả lời:
Theo bài ra ta có:
A(1;0;0), B(0;2;0), C(0;0;-3), D(0;2;-3), E(1;0;-3), F(1;2;0).
Gọi P và Q tương ứng là giao điểm của đường thẳng OM với các mặt phẳng (ABC) và (DEF). Độ dài PQ bằng:
+ Ta có: là 1 VTCP của đường thẳng OM, nên phương trình đường thẳng OM là .
+ Phương trình mặt phẳng (ABC) là .
Gọi , ta có nên:
.
+ Ta có: là 1 VTPT của (DEF).
⇒ Phương trình mặt phẳng (DEF) là: .
Gọi , ta có nên:
\[ - 6q - 3.2q + 2\left( { - 3q} \right) + 12 = 0 \Leftrightarrow q = \frac{2}{3}\]
.
Vậy .
Đáp án D.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi N là trung điểm của CC’ là đường trung bình của tam giác BCC’.
\[ \Rightarrow MN//BC' \Rightarrow BC'//\left( {AMN} \right) \supset AM\].
Khi đó ta có .
Ta có: .
Trong (BCC’B’) kẻ ta có:
.
Áp dụng hệ thức lượng trong tam giác vuông CMN có: .
Vậy .
Đáp án D.
Lời giải
Ta có:
Đồng nhất hệ số ta có
Vậy
Đáp án A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.