Câu hỏi:

25/04/2022 391

Trong không gian tọa độ Oxyz, cho điểm M(1;2;3). Hình chiếu của M tương ứng lên Ox,Oy,Oz,(Oyz),(Ozx),(Oxy)A,B,C,D,E,F. Gọi P và Q tương ứng là giao điểm của đường thẳng OM với các mặt phẳng (ABC)(DEF). Độ dài PQ bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Theo bài ra ta có:

A(1;0;0), B(0;2;0), C(0;0;-3), D(0;2;-3), E(1;0;-3), F(1;2;0).

Gọi P và Q tương ứng là giao điểm của đường thẳng OM với các mặt phẳng (ABC) và (DEF). Độ dài PQ bằng:

+ Ta có: OM=(1;2;3) là 1 VTCP của đường thẳng OM, nên phương trình đường thẳng OM là {x=ty=2tz=3t.

+ Phương trình mặt phẳng (ABC) là x1+y2+z3=16x+3y2z6=0.

Gọi OM(ABC)=P(p;2p;3p) , ta có P(ABC) nên:

6p+3.2p2.(3p)6=0p=13

P(13;23;1).

+ Ta có: DE=(1;2;0);DF=(1;0;3)[DE;DF]=(6;3;2) là 1 VTPT của (DEF).

⇒ Phương trình mặt phẳng (DEF) là: 6x3(y2)+2(z+3)=06x3y+2z+12=0.

Gọi OM(DEF)=Q(q;2q;3q) , ta có Q(DEF) nên:

\[ - 6q - 3.2q + 2\left( { - 3q} \right) + 12 = 0 \Leftrightarrow q = \frac{2}{3}\]

Q(23;43;2).

Vậy PQ=(13)2+(23)2+(1)2=143.

Đáp án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

 (VD): Cho hình lăng trụ đều ABC.A’B’C’, tất cả các cạnh có độ dài bằng a. Gọi M là trung điểm của cạnh BC. Tính khoảng cách giữa hai đường thẳng AM và BC’.  (ảnh 4)

Gọi N là trung điểm của CC’ MN là đường trung bình của tam giác BCC’.

\[ \Rightarrow MN//BC' \Rightarrow BC'//\left( {AMN} \right) \supset AM\].

Khi đó ta có d(AM;BC')=d(BC';(AMN))=d(B;(AMN)).

Ta có: BC(AMN)=Md(B;(AMN))d(C;(AMN))=BMCM=1d(B;(AMN))=d(C;(AMN)).

Trong (BCC’B’) kẻ CHMN(HMN) ta có:

{AMCMAMCNAM(BCC'B')AMCH

{CHAMCHMNCH(AMN)d(C;(AMN))=CH

d(AM;BC')=CH.

Áp dụng hệ thức lượng trong tam giác vuông CMN có: CH=CM.CNCM2+CN2=a2.a2a24+a24=a24.

Vậy d(AM;BC')=a24.

Đáp án D.

Lời giải

Ta có:

a+b+log25c+log23=log645a+b+log25c+log23=log245log26

a+b+log25c+log23=log2(32.5)log2(2.3)a+b+log25c+log23=2log23+log251+log23

a+b+log25c+log23=2+2log232+log251+log23a+b+log25c+log23=2+2+log251+log23

Đồng nhất hệ số ta có a=2,b=2,c=1.

Vậy  a+b+c=2+(2)+1=1.

Đáp án A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP