Câu hỏi:

25/04/2022 434 Lưu

Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Mặt phẳng đi qua A và vuông góc với A’C chia hình lập phương trình hai phần thể tích. Tính tỉ số k hai phần thể tích này, biết  (VD): Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Mặt phẳng đi qua A và vuông góc với A’C chia hình lập phương trình hai phần thể tích. Tính tỉ số k hai phần thể tích này, biết .  (ảnh 1).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

 (VD): Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Mặt phẳng đi qua A và vuông góc với A’C chia hình lập phương trình hai phần thể tích. Tính tỉ số k hai phần thể tích này, biết .  (ảnh 2)

Gọi (α) là mặt phẳng đi qua A và vuông góc với A’C.

Gọi O'=A'C'B'D'I=AO'A'C.

Vì ABCD.A’B’C’D’ là hình lập phương cạnh a nên AC=A'C'=a2;A'C=a3.

Áp dụng định lí Pytago ta có: AO'=AA'2+A'O'2=a2+a22=a62.

Áp dụng định lí Ta-lét ta có:

AIIO'=ACA'O'=2AI=2IO'=23AO'=a63.

A'IIC=A'O'AC=12A'I=12IC=13A'C=a33

Xét tam giác AA’I có: AI2+A'I2=2a23+a23=a2=AA'2, suy ra tam giác AA’I vuông tại I (Định lí Pytago đảo) AO'(α)O'(α).

Lại có {B'D'A'C'B'D'AA'B'D'(ACC'A')B'D'A'CB'D'(α)

(α)(AB'D').

Mặt phẳng (AB'D')chia khối lập phương thành 2 phần: Chóp A.A’B’D’ và khối đa diện B’C’D’.ABCD.

Ta có: VA.A'B'D'=13AA'.SA'B'D'=13AA'.12SABCD=16VABCD.A'B'C'D'

VB'C'D'.ABCD=VABCD.A'B'C'D'16VABCD.A'B'C'D'=56VABCD.A'B'C'D'.

Vậy k=VA.A'B'D'VB'C'D'.ABCD=16VABCD.A'B'C'D'56VABCD.A'B'C'D'=15

Đáp án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

 (VD): Cho hình lăng trụ đều ABC.A’B’C’, tất cả các cạnh có độ dài bằng a. Gọi M là trung điểm của cạnh BC. Tính khoảng cách giữa hai đường thẳng AM và BC’.  (ảnh 4)

Gọi N là trung điểm của CC’ MN là đường trung bình của tam giác BCC’.

\[ \Rightarrow MN//BC' \Rightarrow BC'//\left( {AMN} \right) \supset AM\].

Khi đó ta có d(AM;BC')=d(BC';(AMN))=d(B;(AMN)).

Ta có: BC(AMN)=Md(B;(AMN))d(C;(AMN))=BMCM=1d(B;(AMN))=d(C;(AMN)).

Trong (BCC’B’) kẻ CHMN(HMN) ta có:

{AMCMAMCNAM(BCC'B')AMCH

{CHAMCHMNCH(AMN)d(C;(AMN))=CH

d(AM;BC')=CH.

Áp dụng hệ thức lượng trong tam giác vuông CMN có: CH=CM.CNCM2+CN2=a2.a2a24+a24=a24.

Vậy d(AM;BC')=a24.

Đáp án D.

Lời giải

Ta có:

a+b+log25c+log23=log645a+b+log25c+log23=log245log26

a+b+log25c+log23=log2(32.5)log2(2.3)a+b+log25c+log23=2log23+log251+log23

a+b+log25c+log23=2+2log232+log251+log23a+b+log25c+log23=2+2+log251+log23

Đồng nhất hệ số ta có a=2,b=2,c=1.

Vậy  a+b+c=2+(2)+1=1.

Đáp án A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP