Câu hỏi:

25/04/2022 2,490 Lưu

Chọn ngẫu nhiên 4 đỉnh của một đa giác lồi (H) có 30 đỉnh. Tính xác suất sao cho 4 đỉnh được chọn tạo thành một tứ giác có bốn cạnh đều là đường chéo của (H).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Không gian mẫu: n(Ω)=C304.

Gọi A là biến cố: “4 đỉnh được chọn tạo thành một tứ giác có bốn cạnh đều là đường chéo của (H)”.

Chọn 1 đỉnh bất kì trong 30 đỉnh là 1 đỉnh của tứ giác, kí hiệu là A1, có 30 cách chọn.

Kí hiệu các đỉnh còn lại theo chiều kim đồng hồ lần lượt là A2,A3,A4,...,A30.

Khi đó tứ giác có dạng A1AxAyAz, khi đó ta có {x>1+1=2y>x+130>z>y+1>x+23x<y1<z227.

Đặt X={3;4;5;...;27}, X có 25 phần tử, số cách chọn 1 bộ x, y, z là C253.

n(A)=30.C253.

Vậy xác suất của biến cố A là P(A)=n(A)n(Ω)=30.C253C304.

Đáp án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

 (VD): Cho hình lăng trụ đều ABC.A’B’C’, tất cả các cạnh có độ dài bằng a. Gọi M là trung điểm của cạnh BC. Tính khoảng cách giữa hai đường thẳng AM và BC’.  (ảnh 4)

Gọi N là trung điểm của CC’ MN là đường trung bình của tam giác BCC’.

\[ \Rightarrow MN//BC' \Rightarrow BC'//\left( {AMN} \right) \supset AM\].

Khi đó ta có d(AM;BC')=d(BC';(AMN))=d(B;(AMN)).

Ta có: BC(AMN)=Md(B;(AMN))d(C;(AMN))=BMCM=1d(B;(AMN))=d(C;(AMN)).

Trong (BCC’B’) kẻ CHMN(HMN) ta có:

{AMCMAMCNAM(BCC'B')AMCH

{CHAMCHMNCH(AMN)d(C;(AMN))=CH

d(AM;BC')=CH.

Áp dụng hệ thức lượng trong tam giác vuông CMN có: CH=CM.CNCM2+CN2=a2.a2a24+a24=a24.

Vậy d(AM;BC')=a24.

Đáp án D.

Lời giải

Ta có:

a+b+log25c+log23=log645a+b+log25c+log23=log245log26

a+b+log25c+log23=log2(32.5)log2(2.3)a+b+log25c+log23=2log23+log251+log23

a+b+log25c+log23=2+2log232+log251+log23a+b+log25c+log23=2+2+log251+log23

Đồng nhất hệ số ta có a=2,b=2,c=1.

Vậy  a+b+c=2+(2)+1=1.

Đáp án A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP