Câu hỏi:

08/04/2022 1,028 Lưu

Cho hàm số y=2x3+3x24x+5  có đồ thị là C . Trong số các tiếp tuyến của C , có một tiếp tuyến có hệ số góc nhỏ nhất. Hệ số góc của tiếp tuyến này bằng

A. 3,5.

B. 5,5.

C. 7,5.

D. 9,5.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án B

Đạo hàm y/=6x2+6x4

Giả sử đường thẳng Δ  là tiếp tuyến của C  tại điểm Mx0;y0 .

Suy ra đường thẳng Δ  có hệ số góc là k=y/x0=6x02+6x04 .

Khi đó k=6x02+x023=6x02+x0+141112=6x0+122112112 .

Vậy trong các tiếp tuyến của C , tiếp tuyến có hệ số góc nhỏ nhất là k=5,5 .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Gọi H là hình chiếu vuông góc của M lên d.

Suy ra Hd  nên H1+3t;22t;tMH=3t1;42t;t3  .

Đường thẳng d có một VTCP là u=3;2;1  .

Ta có MHd  nên MH.u=033t1242t+t3=0t=1H4;4;1 .

Lời giải

Đáp án C

S:x32+y22+z52=36, có tâm I3;2;5 và R=6

Ta có: EI=1;1;2EI=12+12+22=6<6=R  .

Do đó điểm E nằm trong mặt cầu (S) .

EP  EΔΔP  nên giao điểm của Δ  (S)  nằm trên đường tròn giao tuyến (C)  tâm K của mặt phẳng (P)  và mặt cầu (S) , trong đó K là hình chiếu vuông góc của I lên mặt phẳng (P) . Gọi ΔS=A;B . Độ dài AB nhỏ nhất khi và chỉ khi dK,Δ  lớn nhất.

Gọi F là hình chiếu của K trên Δ  khi đó dK;Δ=KFKE . Dấu "="  xảy ra khi và chỉ khi FE .

IKPKEΔIKΔKEΔIEΔ .

Mặt khác:nP,EI=5;5;0 , cùng phương với u=1;1;0 .

ΔPΔIE  nên Δ  có một vectơ chỉ phương là u=1;1;0 . Vậy Δ:x=2+ty=1tz=3  .

Trong không gian Oxyz, cho điểm E(2;1;3) , mặt phẳng (P) 2x + 2y - z = 0 và mặt cầu (S) (x - 3)^2 + (y - 2)^2 + (z - 5)^2 . Gọi đenta là đường thẳng đi qua E, nằm trong mặt phẳng   và cắt   tại hai điểm có khoảng cách nhỏ nhất. Phương trình của   là (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. D=

B. D=2;0

C. D=20;+

D. D=

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP