Cho hai đường thẳng song song và . Trên lấy 17 điểm phân biệt, trên lấy 20 điểm phân biệt. Số tam giác mà có các đỉnh được chọn từ 37 điểm này là
Cho hai đường thẳng song song và . Trên lấy 17 điểm phân biệt, trên lấy 20 điểm phân biệt. Số tam giác mà có các đỉnh được chọn từ 37 điểm này là
A. 5690.
B. 5960.
C. 5950.
D. 5590.
Quảng cáo
Trả lời:

Đáp án C
TH1. Chọn 1 điểm thuộc và 2 điểm thuộc có tam giác.
TH2. Chọn 2 điểm thuộc và 1 điểm thuộc có tam giác.
Như vậy, ta có tam giác cần tìm.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D
Gọi H là hình chiếu vuông góc của M lên d.
Suy ra nên .
Đường thẳng d có một VTCP là .
Ta có nên .
Lời giải
Đáp án C
, có tâm và
Ta có: .
Do đó điểm E nằm trong mặt cầu .
Vì và nên giao điểm của và nằm trên đường tròn giao tuyến tâm K của mặt phẳng và mặt cầu , trong đó K là hình chiếu vuông góc của I lên mặt phẳng . Gọi . Độ dài AB nhỏ nhất khi và chỉ khi lớn nhất.
Gọi F là hình chiếu của K trên khi đó . Dấu xảy ra khi và chỉ khi .
Vì .
Mặt khác: , cùng phương với .
Vì nên có một vectơ chỉ phương là . Vậy .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. .
B. .
C. .
D. .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.