Câu hỏi:

25/04/2022 3,377

Cho hình chóp tứ giác \(S.ABCD\) có \(SA = x\) và tất cả các cạnh còn lại đều bằng 1. Khi thể tích khối chóp \(S.ABCD\) đạt giá trị lớn nhất thì \(x\) nhận giá trị nào sau đây?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho hình chóp tứ giác \(S.ABCD\) có \(SA = x\) và tất cả các cạnh còn lại đều bằng 1. Khi thể tích khối chóp \(S.ABCD\) đạt giá trị lớn nhất thì \(x\) nhận giá trị nào sau đây? (ảnh 1)

Gọi

\(H\)là tâm đường tròn ngoại tiếp tam giác \(BCD,\) do \(SB = SC = SD\) nên \(SH\) là trục của đường tròn ngoại tiếp tam giác \(BCD,\) suy ra \(SH \bot \left( {ABCD} \right).\)

Do tứ giác \(ABCD\) là hình thoi nên \(AC\) là đường trung trực của đường thẳng \(BD\) do đó \(H \in AC.\)

Đặt \(\alpha = \widehat {ACD},0 < \alpha < \frac{\pi }{2} \Rightarrow \widehat {BCD} = 2\alpha ,\) suy ra \({S_{ABCD}} = 2{S_{BCD}} = BC.CD.\sin \widehat {BCD} = \sin 2\alpha .\)

Gọi \(K\) là trung điểm của \(CD \Rightarrow CD \bot SK,\) mà \(CD \bot SH\) suy ra \(CD \bot HK.\)

\(HC = \frac{{CK}}{{\cos \alpha }} = \frac{1}{{2\cos \alpha }},SH = \sqrt {S{C^2} - H{C^2}} = \sqrt {1 - \frac{1}{{4{{\cos }^2}\alpha }}} = \frac{{\sqrt {4{{\cos }^2}\alpha - 1} }}{{2\cos \alpha }}\).

Thể tích khối chóp \(S.ABCD\) là \(V = \frac{1}{3}SH.{S_{ABCD}} = \frac{1}{3}\frac{{\sqrt {4\cos \alpha - 1} }}{{2\cos \alpha }}.\sin 2\alpha = \frac{1}{3}\sin \alpha \sqrt {4{{\cos }^2}\alpha - 1} \)

Do đó \(V = \frac{1}{6}\left( {2\sin \alpha } \right)\sqrt {4{{\cos }^2}\alpha - 1} \le \frac{1}{6}\frac{{4{{\sin }^2}\alpha + 4{{\cos }^2}\alpha - 1}}{2} = \frac{1}{4}.\)

Dấu “=” xảy ra khi \(2\sin \alpha = \sqrt {4{{\cos }^2}\alpha - 1} \Leftrightarrow 4{\sin ^2}\alpha = 4{\cos ^2}\alpha - 1 \Leftrightarrow {\cos ^2}\alpha = \frac{5}{8}\)

\( \Leftrightarrow \cos \alpha = \frac{{\sqrt {10} }}{4}.\) Khi đó \(HC = \frac{2}{{\sqrt {10} }},SH = \frac{{\sqrt {15} }}{5}.\)

Gọi \(O = AC \cap BD,\) suy ra \(AC = 2OC = 2CD.\cos \alpha = \frac{{\sqrt {10} }}{2}.\)

\(AH = AC - HC = \frac{{\sqrt {10} }}{2} - \frac{2}{{\sqrt {10} }} = \frac{3}{{\sqrt {10} }}.\)

Vậy \(x = SA = \sqrt {S{H^2} + A{H^2}} = \sqrt {\frac{3}{5} + \frac{9}{{10}}} = \frac{{\sqrt 6 }}{2}.\)

Đáp án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp tứ giác đều S.ABCD có SA = AB = a. Góc giữa SA và CD là (ảnh 1)

Vì \(AB//CD\) nên \(\left( {\widehat {SA;CD}} \right) = \left( {\widehat {SA;AB}} \right)\) mà \(S.ABCD\) là chóp tứ giác đều và \(SA = AB = a\) nên \(\Delta SAB\) đều. Vậy \(\widehat {\left( {SA;AB} \right)} = {60^0},\) khi đó góc giữa \(SA\) và \(CD\) là \({60^0}\) nên chọn đáp án A.

Lời giải

Cho hình chóp \(S.ABCD\) có \(ABCD\) là hình chữ nhật. Biết \(AB = a\sqrt 2 ,AD = 2a,SA \bot \left( {ABCD} \right)\) và \(SA = a\sqrt 2 .\) Góc giữa hai đường thẳng \(SC\) và \(AB\) bằngA.\({ (ảnh 1)

Vì \(AB//CD\) nên \(\left( {\widehat {SC;AB}} \right) = \left( {\widehat {SC;CD}} \right) = \widehat {SCD}.\)

Ta có \(\left\{ \begin{array}{l}CD \bot AD\\CD \bot SA\end{array} \right. \Rightarrow CD \bot SD\)

\( \Rightarrow \Delta SCD\) vuông tại D.

Trong tam giác vuông \(SAD\) có

\(SD = \sqrt {S{A^2} + A{D^2}} = \sqrt {2{a^2} + 4{a^2}} = a\sqrt 6 .\)

Trong tam giác vuông \(SCD\) có

\(\tan \widehat {SCD} = \frac{{SD}}{{CD}} = \frac{{a\sqrt 6 }}{{a\sqrt 2 }} = \sqrt 3 \Rightarrow \widehat {SCD} = {60^0}.\)

Vậy góc giữa hai đường thẳng \(SC\) và \(AB\) bằng \({60^0}.\)

Đáp án B.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP