Câu hỏi:
27/04/2022 20,387Gọi \(S\) là tập hợp các giá trị nguyên dương của \(m\) để hàm số \(y = {x^3} - 3\left( {2m + 1} \right){x^2} + \left( {12m + 5} \right)x + 2\) đồng biến trên khoảng \(\left( {2; + \infty } \right).\) Số phần tử của \(S\) bằng
Câu hỏi trong đề: [Năm 2022] Đề thi thử môn Toán THPT Quốc gia có đáp án (30 đề) !!
Bắt đầu thiQuảng cáo
Trả lời:
Tập xác định \(D = \mathbb{R}\)
\(y' = 3{x^2} - 6\left( {2m + 1} \right)x + 12m + 5\)
Hàm số đồng biến trong khoảng \(\left( {2; + \infty } \right)\) khi \(y' \ge 0,\forall x \in \left( {2; + \infty } \right).\)
\( \Leftrightarrow 3{x^2} - 6\left( {2m + 1} \right)x + 12m + 5 \ge 0\forall x \in \left( {2; + \infty } \right).\)
\(3{x^2} - 6\left( {2m + 1} \right)x + 12m + 5 \ge 0 \Leftrightarrow m \le \frac{{3{x^2} - 6x + 5}}{{12\left( {x - 1} \right)}},\forall x \in \left( {2; + \infty } \right)\)
Xét hàm số \(g\left( x \right) = \frac{{3{x^2} - 6x + 5}}{{12\left( {x - 1} \right)}},\forall x \in \left( {2; + \infty } \right).\)
\(g'\left( x \right) = \frac{{3{x^2} - 6x + 1}}{{12{{\left( {x - 1} \right)}^2}}} >0,\forall x \in \left( {2; + \infty } \right) \Rightarrow \) Hàm số \(g\left( x \right)\) đồng biến trong khoảng \(\left( {2; + \infty } \right).\)
Do đó: \(m \le g\left( x \right),\forall x \in \left( {2; + \infty } \right) \Rightarrow m \le g\left( 2 \right) \Leftrightarrow m \le \frac{5}{{12}}.\)
Vì \(0 < m \le \frac{5}{{12}}.\) Do đó không có giá trị nguyên dương nào của \(m\) thỏa mãn bài toán.
Đáp án C
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số có đồ thị là đường cong trong hình bên. Có bao nhiêu số dương trong các số \(a,b,c,d?\)
Câu 2:
Cho các số dương \(a,b,c\) khác 1 thỏa mãn \({\log _a}\left( {bc} \right) = 3,{\log _b}\left( {ca} \right) = 4.\) Tính giá trị của \({\log _c}\left( {ab} \right).\)
Câu 3:
Cho hình chóp \(S.ABCD\) có đáy là hình vuông \(ABCD\) cạnh \(a,\) cạnh bên SA vuông góc với mặt phẳng đáy và \(SA = a\sqrt 2 .\) Thể tích của khối chóp \(S.ABCD\) bằng
Câu 4:
Cho tứ diện \(OABC\) có \(OA,OB,OC\) đôi một vuông góc và \(OA = OB = OC = a.\) Khi đó thể tích của khối tứ diện \(OABC\) là
Câu 5:
Cho hình lăng trụ đứng \(ABC.A'B'C'\) có \(AB = AC = a,\) góc \(BAC = {120^0},AA' = a.\) Gọi \(M,N\) lần lượt là trung điểm của \(B'C'\) và \(CC'.\) Số đo góc giữa mặt phẳng \(\left( {AMN} \right)\) và mặt phẳng \(\left( {ABC} \right)\) bằng
Câu 6:
Cho hàm số \(f\left( x \right) = a{x^4} + b{x^3} + c{x^2} + dx + e,\left( {a \ne 0} \right)\) có đồ thị của đạo hàm \(f'\left( x \right)\) như hình vẽ. Biết rằng \(e >n.\)
Số điểm cực trị của hàm số \(y = f'\left( {f\left( x \right) - 2x} \right)\) là
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
45 bài tập Xác suất có lời giải
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
50 bài tập Nguyên hàm, tích phân và ứng dụng có lời giải
CÂU TRẮC NGHIỆM ĐÚNG SAI
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận