Câu hỏi:

27/04/2022 24,554

Cho hàm số y=ax3+bx2+cx+d(a,b,c,d) có đồ thị là đường cong trong hình bên. Có bao nhiêu số dương trong các số \(a,b,c,d?\)

Cho hàm số có đồ thị là đường cong trong hình bên. Có bao nhiêu số dương trong các số \(a,b,c,d?\) (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Từ đồ thị ta có: \(\mathop {\lim }\limits_{x \to + \infty } y = - \infty \Rightarrow a < 0.\)

Gọi \({x_1}\) và \({x_2}\) lần lượt là hai điểm cực trị của hàm số đã cho \(\left( {{x_1} < {x_2}} \right).\)

Từ đồ thị ta thấy: \({x_1} + {x_2} >0 \Rightarrow ab < 0 \Rightarrow b >0.\)</>

Và: \({x_1}.{x_2} >0 \Rightarrow ac >0 \Rightarrow c >0.\)

Đồ thị hàm số giao với trục tung tại điểm có tung độ \(y \Rightarrow d >0.\)

Vậy trong các số \(a,b,c,d\) có hai số dương.

Đáp án D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tập xác định \(D = \mathbb{R}\)

\(y' = 3{x^2} - 6\left( {2m + 1} \right)x + 12m + 5\)

Hàm số đồng biến trong khoảng \(\left( {2; + \infty } \right)\) khi \(y' \ge 0,\forall x \in \left( {2; + \infty } \right).\)

\( \Leftrightarrow 3{x^2} - 6\left( {2m + 1} \right)x + 12m + 5 \ge 0\forall x \in \left( {2; + \infty } \right).\)

\(3{x^2} - 6\left( {2m + 1} \right)x + 12m + 5 \ge 0 \Leftrightarrow m \le \frac{{3{x^2} - 6x + 5}}{{12\left( {x - 1} \right)}},\forall x \in \left( {2; + \infty } \right)\)

Xét hàm số \(g\left( x \right) = \frac{{3{x^2} - 6x + 5}}{{12\left( {x - 1} \right)}},\forall x \in \left( {2; + \infty } \right).\)

\(g'\left( x \right) = \frac{{3{x^2} - 6x + 1}}{{12{{\left( {x - 1} \right)}^2}}} >0,\forall x \in \left( {2; + \infty } \right) \Rightarrow \) Hàm số \(g\left( x \right)\) đồng biến trong khoảng \(\left( {2; + \infty } \right).\)

Do đó: \(m \le g\left( x \right),\forall x \in \left( {2; + \infty } \right) \Rightarrow m \le g\left( 2 \right) \Leftrightarrow m \le \frac{5}{{12}}.\)

Vì \(0 < m \le \frac{5}{{12}}.\) Do đó không có giá trị nguyên dương nào của \(m\) thỏa mãn bài toán.

Đáp án C

Lời giải

Ta có:

\({\log _a}\left( {bc} \right) = \frac{{{{\log }_c}\left( {bc} \right)}}{{{{\log }_c}a}} = \frac{{{{\log }_c}b + 1}}{{{{\log }_c}a}} = 3 \Rightarrow 3{\log _c}a - {\log _c}b = 1.\left( 1 \right)\)

\({\log _b}\left( {ca} \right) = \frac{{{{\log }_c}\left( {ca} \right)}}{{{{\log }_c}b}} = \frac{{{{\log }_c}a + 1}}{{{{\log }_c}b}} = 4 \Rightarrow {\log _c}a - 4{\log _c}b = - 1.\left( 2 \right)\)

Từ (1) và (2) ta có hệ phương trình

\(\left\{ \begin{array}{l}3{\log _c}a - {\log _c}b = 1\\{\log _c}a - 4{\log _c}b = - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\log _c}a = \frac{5}{{11}}\\{\log _c}b = \frac{4}{{11}}\end{array} \right. \Rightarrow {\log _c}\left( {ab} \right) = {\log _c}a + {\log _c}b = \frac{9}{{11}}.\)

Đáp án D

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP