Câu hỏi:

27/04/2022 4,577

Cho hình lăng trụ đứng \(ABC.A'B'C'\) có \(AB = AC = a,\) góc \(BAC = {120^0},AA' = a.\) Gọi \(M,N\) lần lượt là trung điểm của \(B'C'\) và \(CC'.\) Số đo góc giữa mặt phẳng \(\left( {AMN} \right)\) và mặt phẳng \(\left( {ABC} \right)\) bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho hình lăng trụ đứng \(ABC.A'B'C'\) có \(AB = AC = a,\) góc \(BAC = {120^0},AA' = a.\) Gọi \(M,N\) lần lượt là trung điểm của \(B'C'\) và \(CC'.\) Số đo góc giữa mặt phẳng \(\left( {AMN} \r (ảnh 1)

Ta có \(\Delta A'MC'\) vuông tại \(M\) có \(\widehat {A'C'M} = {30^0} \Rightarrow A'M = \frac{1}{2}.A'C' = \frac{2}{2}\)

\(MC' = \frac{{a\sqrt 3 }}{2} \Rightarrow B'C' = a\sqrt 3 .\)

Gọi \(\alpha \) là góc giữa hai mặt phẳng \(\left( {AMN} \right)\) và mặt phẳng \(\left( {ABC} \right) \Rightarrow \alpha = \left( {\widehat {\left( {AMN} \right);\left( {A'B'C'} \right)}} \right)\)

Tam giác \(A'MC'\) là hình chiếu của tam giác AMN trên mặt phẳng \(\left( {A'B'C'} \right)\) nên \(\cos \alpha = \frac{{{S_{A'MC'}}}}{{{S_{AMN}}}}\)

Ta có \({S_{A'MC'}} = \frac{1}{2}.{S_{ABC}} = \frac{1}{4}.AB.AC.\sin \widehat {BAC} = \frac{{\sqrt 3 {a^2}}}{8}.\)

\(A{N^2} = A{C^2} + C{N^2} = {a^2} + {\left( {\frac{a}{2}} \right)^2} = \frac{{5{a^2}}}{4} \Rightarrow AN = \frac{{a\sqrt 5 }}{2}.\)

AM2=AA'2+A'M2=AA'2+(A'C'2)2=5a24AM=a52

\(M{N^2} = C'{N^2} + C'{M^2} = \frac{{{a^2}}}{4} + {\left( {\frac{{a\sqrt 3 }}{2}} \right)^2} = {a^2} \Rightarrow MN = a.\)

Gọi \[I\] là trung điểm của \(MN \Rightarrow AI \bot MN\)

\(AI = \sqrt {A{N^2} - I{N^2}} = a\)

\({S_{AMN}} = \frac{1}{2}.AI.MN = \frac{{{a^2}}}{2} \Rightarrow \cos \alpha = \frac{{\sqrt 3 }}{4}\)

Vậy số đo góc giữa mặt phẳng \(\left( {AMN} \right)\) và mặt phẳng \(\left( {ABC} \right)\) bằng \(\arccos \frac{{\sqrt 3 }}{4}.\)

Đáp án C

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Từ đồ thị ta có: \(\mathop {\lim }\limits_{x \to + \infty } y = - \infty \Rightarrow a < 0.\)

Gọi \({x_1}\) và \({x_2}\) lần lượt là hai điểm cực trị của hàm số đã cho \(\left( {{x_1} < {x_2}} \right).\)

Từ đồ thị ta thấy: \({x_1} + {x_2} >0 \Rightarrow ab < 0 \Rightarrow b >0.\)</>

Và: \({x_1}.{x_2} >0 \Rightarrow ac >0 \Rightarrow c >0.\)

Đồ thị hàm số giao với trục tung tại điểm có tung độ \(y \Rightarrow d >0.\)

Vậy trong các số \(a,b,c,d\) có hai số dương.

Đáp án D

Lời giải

Tập xác định \(D = \mathbb{R}\)

\(y' = 3{x^2} - 6\left( {2m + 1} \right)x + 12m + 5\)

Hàm số đồng biến trong khoảng \(\left( {2; + \infty } \right)\) khi \(y' \ge 0,\forall x \in \left( {2; + \infty } \right).\)

\( \Leftrightarrow 3{x^2} - 6\left( {2m + 1} \right)x + 12m + 5 \ge 0\forall x \in \left( {2; + \infty } \right).\)

\(3{x^2} - 6\left( {2m + 1} \right)x + 12m + 5 \ge 0 \Leftrightarrow m \le \frac{{3{x^2} - 6x + 5}}{{12\left( {x - 1} \right)}},\forall x \in \left( {2; + \infty } \right)\)

Xét hàm số \(g\left( x \right) = \frac{{3{x^2} - 6x + 5}}{{12\left( {x - 1} \right)}},\forall x \in \left( {2; + \infty } \right).\)

\(g'\left( x \right) = \frac{{3{x^2} - 6x + 1}}{{12{{\left( {x - 1} \right)}^2}}} >0,\forall x \in \left( {2; + \infty } \right) \Rightarrow \) Hàm số \(g\left( x \right)\) đồng biến trong khoảng \(\left( {2; + \infty } \right).\)

Do đó: \(m \le g\left( x \right),\forall x \in \left( {2; + \infty } \right) \Rightarrow m \le g\left( 2 \right) \Leftrightarrow m \le \frac{5}{{12}}.\)

Vì \(0 < m \le \frac{5}{{12}}.\) Do đó không có giá trị nguyên dương nào của \(m\) thỏa mãn bài toán.

Đáp án C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho tứ diện \(OABC\) có \(OA,OB,OC\) đôi một vuông góc và \(OA = OB = OC = a.\) Khi đó thể tích của khối tứ diện \(OABC\) là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho hình chóp \(S.ABCD\) có đáy là hình vuông \(ABCD\) cạnh \(a,\) cạnh bên SA vuông góc với mặt phẳng đáy và \(SA = a\sqrt 2 .\) Thể tích của khối chóp \(S.ABCD\) bằng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay