Câu hỏi:
27/04/2022 2,023Cho hàm số \(f\left( x \right) = a{x^4} + b{x^3} + c{x^2} + dx + e,\left( {a \ne 0} \right)\) có đồ thị của đạo hàm \(f'\left( x \right)\) như hình vẽ. Biết rằng \(e >n.\)
Số điểm cực trị của hàm số \(y = f'\left( {f\left( x \right) - 2x} \right)\) là
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có:
Xét phương trình \(\left( 1 \right) \Leftrightarrow f'\left( x \right) = 2.\)
Từ đồ thị ta có phương trình \(\left( 1 \right)\) có 3 nghiệm phân biệt \({x_1},0,{x_2}\left( {{x_1} < m < 0 < n < {x_2}} \right).\)
Xét phương trình \(\left( 2 \right).\)
Trước hết ta có: \(f'\left( x \right) = 4a{x^3} + 3b{x^2} + 2cx + d.\)
\(f'\left( 0 \right) = 2 \Leftrightarrow d = 2.\)
Suy ra: \(f\left( x \right) = a{x^4} + b{x^3} + c{x^2} + 2x + e.\)
\( \Leftrightarrow \left[ \begin{array}{l}a{x^4} + b{x^3} + c{x^2} = m - e{\rm{ }}\left( {2a} \right)\\a{x^4} + b{x^3} + c{x^2} = n - e{\rm{ }}\left( {2b} \right)\end{array} \right..\)
Số nghiệm của hai phương trình \(\left( {2a} \right)\) và \(\left( {2b} \right)\) lần lượt bằng số giao điểm của hai đường thẳng \(y = m - e\) và \(y = n - e\) (trong đó \(m - e < n - e < 0)\) với đồ thị hàm số \(g\left( x \right) = a{x^4} + b{x^3} + c{x^2}.\)
\(g'\left( x \right) = 4a{x^3} + 3b{x^2} + 2cx.\)
\(g'\left( x \right) = 0 \Leftrightarrow 4a{x^3} + 3b{x^2} + 2cx = 0 \Leftrightarrow 4a{x^3} + 3b{x^3} + 2cx + 2 = 2\)
\( \Leftrightarrow f'\left( x \right) = 2 \Leftrightarrow \left[ \begin{array}{l}x = {x_1} < 0\\x = 0\\x = {x_2} >0\end{array} \right.\)</>
Từ đồ thị hàm số \(y = f'\left( x \right)\) suy ra:
+) \(\mathop {\lim }\limits_{x \to - \infty } f'\left( x \right) = + \infty \) nên \(a < 0\) nên \(\mathop {\lim }\limits_{x \to - \infty } g\left( x \right) = - \infty ,\mathop {\lim }\limits_{x \to + \infty } g\left( x \right) = - \infty .\)
Bảng biến thiên của hàm số \(y = g\left( x \right):\)
Từ bảng biến thiên suy ra hai phương trình \(\left( {2a} \right),\left( {2b} \right)\) mỗi phương trình có hai nghiệm phân biệt
(hai phương trình không có nghiệm trùng nhau) và khác \({x_1},0,{x_2}.\)
Suy ra phương trình có 7 nghiệm đơn phân biệt. Vậy hàm số \(y = f'\left[ {f\left( x \right) - 2x} \right]\) có 7 điểm cực trị.
Đáp án A
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số có đồ thị là đường cong trong hình bên. Có bao nhiêu số dương trong các số \(a,b,c,d?\)
Câu 2:
Gọi \(S\) là tập hợp các giá trị nguyên dương của \(m\) để hàm số \(y = {x^3} - 3\left( {2m + 1} \right){x^2} + \left( {12m + 5} \right)x + 2\) đồng biến trên khoảng \(\left( {2; + \infty } \right).\) Số phần tử của \(S\) bằng
Câu 3:
Cho các số dương \(a,b,c\) khác 1 thỏa mãn \({\log _a}\left( {bc} \right) = 3,{\log _b}\left( {ca} \right) = 4.\) Tính giá trị của \({\log _c}\left( {ab} \right).\)
Câu 4:
Có bao nhiêu tiếp tuyến của đồ thị hàm số \(y = {x^3} + 3{x^2} - 3\) song song với trục hoành?
Câu 5:
Cho hình lăng trụ đứng \(ABC.A'B'C'\) có \(AB = AC = a,\) góc \(BAC = {120^0},AA' = a.\) Gọi \(M,N\) lần lượt là trung điểm của \(B'C'\) và \(CC'.\) Số đo góc giữa mặt phẳng \(\left( {AMN} \right)\) và mặt phẳng \(\left( {ABC} \right)\) bằng
Câu 6:
Một loại thuốc được dùng cho một bệnh nhân và nồng độ thuốc trong máu của bệnh nhân được giám sát bởi bác sĩ. Biết rằng nồng độ thuốc trong máu của bệnh nhân sau khi tiêm vào cơ thể trong \(t\) giờ được cho bởi công thức \(c\left( t \right) = \frac{t}{{{t^2} + 1}}\left( {mg/L} \right).\) Sau khi tiêm thuốc bao lâu thì nồng độ thuốc trong máu của bệnh nhân cao nhất?
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 3)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 5)
30 đề thi THPT Quốc gia môn Toán năm 2022 có lời giải (đề 1)
Đề minh họa THPT Quốc gia môn Toán năm 2023 có đáp án
về câu hỏi!