Câu hỏi:
26/04/2022 11,020Có bao nhiêu giá trị nguyên của tham số \(m\) thuộc đoạn \(\left[ { - 20;2} \right]\) để hàm số đồng biến trên \(\mathbb{R}.\)
Quảng cáo
Trả lời:
Ta có \(y' = 3{x^2} - 2x + 3m.\)
Để hàm số đồng biến trên \(\mathbb{R}\) thì \(y' \ge 0{\rm{ }}\forall x \in \mathbb{R} \Leftrightarrow 3{x^2} - 2x + 3m \ge 0{\rm{ }}\forall x \in \mathbb{R}\)
\( \Leftrightarrow \Delta ' \le 0 \Leftrightarrow 1 - 9m \le 0 \Leftrightarrow m \ge \frac{1}{9}.\) Mà \(m\) nguyên thuộc đoạn [-20;2] nên suy ra \(\left[ \begin{array}{l}m = 1\\m = 2\end{array} \right..\)
Vậy có 2 giá trị của \(m\) thỏa mãn yêu cầu bài toán.
Đáp án A
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: \(\mathop {\lim }\limits_{x \to \pm \infty } y = 2 \Rightarrow \) đường thẳng \(y = 2\)là tiệm cận ngang của đồ thị hàm số.
\(\mathop {\lim }\limits_{x \to {3^ + }} y = + \infty ;\mathop {\lim }\limits_{x \to {3^ - }} y = - \infty \Rightarrow \) đường thẳng \(x = 3\) là tiệm cận đứng của đồ thị hàm số.
Vậy tâm đối xứng của đồ thị là \(A\left( {3;2} \right).\)
Đáp án A
Lời giải
Ta có \(y' = {x^2} - 2mx + {m^2} - 4.\)
\(y'\left( 3 \right) = 9 - 6m + {m^2} - 4 = {m^2} - 6m + 5 = 0\)
Ta có: \( \Leftrightarrow \left[ \begin{array}{l}m = 1\\m = 5\end{array} \right.\)
Có
Với \(m = 5\) ta có: Suy ra hàm số đạt cực đại tại x=3.
Với \(m = 1\) ta có suy ra hàm số đạt cực tiểu tại \(x = 3\)
Đáp án C
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
45 bài tập Xác suất có lời giải