Câu hỏi:

26/04/2022 10,171

Cho lăng trụ đứng \(ABC.A'B'C'\) có độ dài cạnh bên là \(2a,\) đáy \(ABC\) là tam giác vuông cân tại \(A,\) góc giữa \(AC'\) và mặt phẳng \(\left( {BCC'B'} \right)\) bằng \({30^0}\) (tham khảo hình vẽ).

 Cho lăng trụ đứng \(ABC.A'B'C'\) có độ dài cạnh bên là \(2a,\) đáy \(ABC\) là tam giác vuông cân tại \(A,\) góc giữa \(AC'\) và mặt phẳng \(\left( {BCC'B'} \right)\) bằng \({30^0}\) (tham kh (ảnh 1)

Tính theo \(a\) thể tích khối trụ có hai đáy là hai đường tròn ngoại tiếp hai đáy của lăng trụ \(ABC.A'B'C'.\) 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
 Cho lăng trụ đứng \(ABC.A'B'C'\) có độ dài cạnh bên là \(2a,\) đáy \(ABC\) là tam giác vuông cân tại \(A,\) góc giữa \(AC'\) và mặt phẳng \(\left( {BCC'B'} \right)\) bằng \({30^0}\) (tham kh (ảnh 2)

Gọi \(H\) là trung điểm của đoạn \(BC,\) vì \(\Delta ABC\) là tam giác vuông cân nên \(H\) là chân đường cao xuất phát từ đỉnh \(A\) đồng thời cũng là tâm đường tròn ngoại tiếp \(\Delta ABC.\)

Suy ra bán kính đường tròn ngoại tiếp đáy của lăng trụ \(ABC.A'B'C'\) là \(HC.\)

Vì \(\left\{ \begin{array}{l}AH \bot BC\\AH \bot BB'\end{array} \right.\) nên \(AH \bot \left( {BCC'B'} \right).\)

Suy ra \(HC\) là hình chiếu vuông góc của \(AC\) lên \(\left( {BCC'B'} \right).\)

Góc giữa \(AC'\) và mặt phẳng \(\left( {BCC'B'} \right)\) là \(\widehat {AC'H} = {30^0}.\)

Đặt \(HC = x \Rightarrow AC = x\sqrt 2 .\)

Áp dụng định lý Pytago trong \(\Delta ACC'\) ta được \(AC' = \sqrt {2{x^2} + 4{a^2}} .\)

Áp dụng định lý Pytago trong \(\Delta HCC'\) ta được \[HC' = \sqrt {{x^2} + 4{a^2}} .\]

Xét \(\Delta AHC'\) vuông tại \(H\) có: \(\cos \left( {{{30}^0}} \right) = \frac{{HC'}}{{AC'}} \Leftrightarrow \frac{{\sqrt 3 }}{2} = \sqrt {\frac{{{x^2} + 4{a^2}}}{{2{x^2} + 4{a^2}}}} .\)

Khi đó: \(\frac{3}{4} = \frac{{{x^2} + 4{a^2}}}{{2{x^2} + 4{a^2}}} \Leftrightarrow 6{x^2} + 12{a^2} = 4{x^2} + 16{a^2} \Leftrightarrow x = a\sqrt 2 .\)

Thể tích khối trụ có hai đáy là hai đường tròn ngoại tiếp của lăng trụ \(ABC.A'B'C'\) là:

\(V = \pi {R^2}h = \pi {\left( {HC} \right)^2}CC' = \pi {\left( {a\sqrt 2 } \right)^2}.2a = 4\pi {a^3}.\)

Đáp án D

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm tâm đối xứng của đồ thị hàm số \(y = \frac{{2x + 1}}{{x - 3}}.\) 

Xem đáp án » 26/04/2022 183,427

Câu 2:

Tìm \(m\) để hàm số \(y = \frac{1}{3}{x^3} - m{x^2} + \left( {{m^2} - 4} \right)x + 3\) đạt cực đại tại điểm x=3.

Xem đáp án » 26/04/2022 12,326

Câu 3:

Cho hai số thực dương \(a,b.\) Rút gọn biểu thức \[\] ta thu được \(A = {a^m}.{b^n}.\)

Xem đáp án » 26/04/2022 11,132

Câu 4:

Có bao nhiêu giá trị nguyên của tham số \(m\) thuộc đoạn \(\left[ { - 20;2} \right]\) để hàm số y=x3x2+3mx1 đồng biến trên \(\mathbb{R}.\) 

Xem đáp án » 26/04/2022 10,865

Câu 5:

Viết phương trình tiếp tuyến của đồ thị hàm số \(y = \frac{{2x - 1}}{{x - 2}},\) biết tiếp tuyến có hệ số góc \(k = - 3\) 

Xem đáp án » 26/04/2022 7,078

Câu 6:

Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right),\) hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SBC} \right)\) vuông góc với nhau, \(SB = a\sqrt 3 ,\widehat {BSC} = {45^0},\widehat {ASB} = {30^0}.\) Thể tích khối chóp SABC là \(V.\) Tìm tỉ số \(\frac{{{a^3}}}{V}.\) 

Xem đáp án » 26/04/2022 4,597
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay