Câu hỏi:
11/04/2022 11,239Quảng cáo
Trả lời:
Dựa vào đồ thị ta có đồ thị trên là đồ thị hàm bậc bốn trùng phương có bề lõm hướng xuống nên hệ số \(a < 0\) nên loại đáp án A và D.
Xét điểm \(\left( {1;2} \right)\) thuộc đồ thị hàm số trên.
Thay \(\left( {1;2} \right)\) vào \(y = - {x^4} + {x^2} + 1\) ta được 2 =1 (vô lý).
Thay \(\left( {1;2} \right)\) vào \(y = - {x^4} + 2{x^2} + 1\) ta được 2 = 2 (đúng).
Nên đồ thị trong hình vẽ trên là đồ thị của hàm số \(y = - {x^4} + 2{x^2} + 1.\)
Đáp án A
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi không gian mẫu là \(\Omega .\)
Chọn 3 từ 40 thẻ có \(C_{40}^3\) cách.
\( \Rightarrow n\left( \Omega \right) = C_{40}^3 = 9880.\)
Gọi A: “Tổng 3 số ghi trên thẻ là một số chia hết cho 3”.
Các số chia hết cho 3 từ 1 đến 40 là: \(\left\{ {3;6;9;...30;33;36;39} \right\}:\) có 13 số.
Các số chia cho 3 dư 1 từ 1 đến 40 là: \(\left\{ {1;4;7;...31;34;37;40} \right\}:\) có 14 số.
Các số chia cho 3 dư 2 từ 1 đến 40 là: \(\left\{ {2;5;8;...32;35;38} \right\}:\) có 13 số.
Trường hợp 1:3 số cùng chia hết cho 3; chia cho 3 dư 1; chia cho 3 dư 2:
Có: \(C_{13}^3 + C_{13}^3 + C_{14}^3 = 286 + 286 + 364 = 936\) cách.
Trường hợp 2:1 số chia hết cho 3, 1 số chia cho 3 dư 1 và 1 số chia cho 3 dư 2:
Có: \(C_{13}^1.C_{13}^1.C_{14}^1 = 2366\) cách.
Vậy số cách chọn để được tổng 3 số chia hết cho 3 là: \(936 + 2366 = 3302\) cách.
\( \Rightarrow n\left( A \right) = 3302.\)
Xác suất biến cố A là: \(p\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{3302}}{{9880}} = \frac{{127}}{{380}}.\)
Đáp án B
Lời giải
\(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot BC,\) mà \(BC \bot AB\) (hình chữ nhật \(ABCD) \Rightarrow BC \bot \left( {SAB} \right)\)
\( \Rightarrow B\) là hình chiếu của \(C\) trên mặt phẳng \(\left( {SAB} \right) \Rightarrow \widehat {BSC} = \left( {SC,\left( {SAB} \right)} \right) = {30^0}\)
\(\Delta BSC\) vuông tại \(B,\) ta có: \(SB = BC.\cot \widehat {BSC} = a\sqrt 3 .\cot {30^0} = 3a\)
\(\Delta SAB\) vuông tai \(A,\) ta có: \(SA = \sqrt {S{B^2} - A{B^2}} = \sqrt {9{a^2} - 4{a^2}} = \sqrt {5{a^2}} = a\sqrt 5 \)
Diện tích hình chữ nhật \(ABCD\) là \(AB.BC = 2a.a\sqrt 3 = 2{a^2}\sqrt 3 \)
Vậy thể tích khối chóp \(S.ABCD\) là \(V = \frac{1}{3}.a\sqrt 5 .2{a^2}\sqrt 3 = \frac{{2\sqrt {15} {a^3}}}{3}.\)
Đáp án D
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.