Câu hỏi:
26/04/2022 2,058Cho lăng trụ tam giác đều \[ABC.A'B'C'\] có \[AA' = a\]. Khoảng cách giữa và \[CC'\] bằng \(a\sqrt 3 \) . Thể tích khối lăng trụ \[ABC.A'B'C'\]
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có
\(BB'//CC' \Rightarrow CC'//\left( {ABB'} \right)\) hay \(CC'//\left( {ABB'A'} \right).\)
Do đó \(d\left( {AB',CC'} \right) = d\left( {CC',\left( {ABB'A'} \right)} \right) = d\left( {C,\left( {ABB'A'} \right)} \right).\)
Kẻ \(CH \bot AB\) tại \(H.\)
Ta có \(CH \bot AB\) và nên \(CH \bot \left( {ABB'A'} \right).\)
Do đó \(d\left( {AB',CC'} \right) = d\left( {C,\left( {ABB'A'} \right)} \right) = CH = a\sqrt 3 .\)
Trong tam giác \(ABC\) có
Vậy \({V_{ABC.A'B'C'}} = AA'.{S_{ABC}} = AA'.\frac{1}{2}BA.BC.\sin {60^0} = a.\frac{1}{2}.2a.2a.\frac{{\sqrt 3 }}{2} = {a^3}\sqrt 3 .\)
Đáp án B
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Đồ thị của hàm số nào dưới đây có dạng đường cong trong hình vẽ sau?
Câu 2:
Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình chữ nhật với \[AB = 2a\], \[BC = a\sqrt 3 \]. Cạnh bên \[SA\] vuông góc với đáy và đường thẳng \[SC\] tạo với mặt phẳng \[\left( {SAB} \right)\] một góc \[30^\circ \]. Tính thể tích \[V\] của khối chóp \[S.ABCD\] theo \[a\].
Câu 3:
Số nghiệm của phương trình\(\frac{{\sin 2x}}{{\cos x + 1}} = 0\) trên đoạn \(\left[ {0;2020\pi } \right]\) là
Câu 4:
Cho 40 thẻ được đánh số từ 1 đến 40, chọn ngẫu nhiên 3 thẻ.Xác suất để tổng các số ghi trên 3 thẻ được chọn là một số chia hết cho 3 bằng
Câu 5:
Cho mặt cầu \(\left( S \right)\) có tâm \(O\), bán kính \(6\).Biết khoảng cách từ tâm O đến mặt phẳng \(\left( \alpha \right)\) bằng \(4\). Mặt phẳng \(\left( \alpha \right)\) cắt mặt cầu \(\left( S \right)\) theo giao tuyến là đường tròn \(\left( C \right)\) có bán kính bằng
Câu 6:
Với \[a\] là số thực dương khác \[1\] tùy ý, \[{\log _{{a^5}}}{a^4}\] bằng
Câu 7:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi \(AC = 2a;\,BD = 3a\), \(SA = a\), \(SA\) vuông góc với mặt đáy. Thể tích của khối chóp \(S.ABCD\) là
về câu hỏi!