Câu hỏi:

26/04/2022 5,764

Cho lăng trụ tam giác đều \[ABC.A'B'C'\] có \[AA' = a\]. Khoảng cách giữa AB' và \[CC'\] bằng \(a\sqrt 3 \) . Thể tích khối lăng trụ \[ABC.A'B'C'\]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho lăng trụ tam giác đều \[ABC.A'B'C'\] có \[AA' = a\]. Khoảng cách giữa .. và \[CC'\] bằng\(a\sqrt 3 \) . Thể tích khối lăng trụ \[ABC.A'B'C'\] (ảnh 1)

Ta có

\(BB'//CC' \Rightarrow CC'//\left( {ABB'} \right)\) hay \(CC'//\left( {ABB'A'} \right).\)

Do đó \(d\left( {AB',CC'} \right) = d\left( {CC',\left( {ABB'A'} \right)} \right) = d\left( {C,\left( {ABB'A'} \right)} \right).\)

Kẻ \(CH \bot AB\) tại \(H.\)

Ta có \(CH \bot AB\) và CHBB' nên \(CH \bot \left( {ABB'A'} \right).\)

Do đó \(d\left( {AB',CC'} \right) = d\left( {C,\left( {ABB'A'} \right)} \right) = CH = a\sqrt 3 .\)

Trong tam giác \(ABC\) có HB2+HC2=BC2BC24+3a2=BC2BC=2a.

Vậy \({V_{ABC.A'B'C'}} = AA'.{S_{ABC}} = AA'.\frac{1}{2}BA.BC.\sin {60^0} = a.\frac{1}{2}.2a.2a.\frac{{\sqrt 3 }}{2} = {a^3}\sqrt 3 .\)

Đáp án B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi không gian mẫu là \(\Omega .\)

Chọn 3 từ 40 thẻ có \(C_{40}^3\) cách.

\( \Rightarrow n\left( \Omega \right) = C_{40}^3 = 9880.\)

Gọi A: “Tổng 3 số ghi trên thẻ là một số chia hết cho 3”.

Các số chia hết cho 3 từ 1 đến 40 là: \(\left\{ {3;6;9;...30;33;36;39} \right\}:\) có 13 số.

Các số chia cho 3 dư 1 từ 1 đến 40 là: \(\left\{ {1;4;7;...31;34;37;40} \right\}:\) có 14 số.

Các số chia cho 3 dư 2 từ 1 đến 40 là: \(\left\{ {2;5;8;...32;35;38} \right\}:\) có 13 số.

Trường hợp 1:3 số cùng chia hết cho 3; chia cho 3 dư 1; chia cho 3 dư 2:

Có: \(C_{13}^3 + C_{13}^3 + C_{14}^3 = 286 + 286 + 364 = 936\) cách.

Trường hợp 2:1 số chia hết cho 3, 1 số chia cho 3 dư 1 và 1 số chia cho 3 dư 2:

Có: \(C_{13}^1.C_{13}^1.C_{14}^1 = 2366\) cách.

Vậy số cách chọn để được tổng 3 số chia hết cho 3 là: \(936 + 2366 = 3302\) cách.

\( \Rightarrow n\left( A \right) = 3302.\)

Xác suất biến cố A là: \(p\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{3302}}{{9880}} = \frac{{127}}{{380}}.\)

Đáp án B

Câu 2

Lời giải

Dựa vào đồ thị ta có đồ thị trên là đồ thị hàm bậc bốn trùng phương có bề lõm hướng xuống nên hệ số \(a < 0\) nên loại đáp án A và D.

Xét điểm \(\left( {1;2} \right)\) thuộc đồ thị hàm số trên.

Thay \(\left( {1;2} \right)\) vào \(y = - {x^4} + {x^2} + 1\) ta được 2 =1 (vô lý).

Thay \(\left( {1;2} \right)\) vào \(y = - {x^4} + 2{x^2} + 1\) ta được 2 = 2 (đúng).

Nên đồ thị trong hình vẽ trên là đồ thị của hàm số \(y = - {x^4} + 2{x^2} + 1.\)

Đáp án A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP