Câu hỏi:

25/04/2022 450

Cho lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác \(ABC\) vuông tại \(B;AB = 2a,BC = a,AA' = 2a\sqrt 3 .\) Thể tích khối lăng trụ \(ABC.A'B'C'\) là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác \(ABC\) vuông tại \(B;AB = 2a,BC = a,AA' = 2a\sqrt 3 .\) Thể tích khối lăng trụ \(ABC.A'B'C'\) là (ảnh 1)

Ta có \({S_{\Delta ABC}} = \frac{1}{2}BA.BC = {a^2} \Rightarrow {V_{ABC.A'B'C'}} = {S_{ABC}}.AA' = {a^2}.2a\sqrt 3 = 2{a^3}\sqrt 3 .\)

Vậy \(V = 2{a^3}\sqrt 3 .\)

Đáp án B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đặt \(g\left( x \right) = 3{x^4} - 8{x^3} - 6{x^2} + 24x - m.\) Ta có số điểm cực trị của hàm số

\(y = \left| {3{x^4} - 8{x^3} + 24x - m} \right|\) bằng \(a + b.\) Với Gọi \(\left( S \right)\) là tập hợp các giá trị nguyên \(m\) để đồ thị hàm số \(y = \left| {3{x^4} - 8{x^3} - 6{x^2} + 24x - m} \right|\) có 7 điểm cực trị. Tính tổng các phần tử của \(S.\)A. (ảnh 1)là số điểm cực trị của hàm \(g\left( x \right)\) và \(b\) là số nghiệm đơn (bội lẻ) của phương trình \(g\left( x \right) = 0.\)

Xét hàm số g(x)=3x48x36x2+24xm ta có

\(g'\left( x \right) = 12{x^3} - 24{x^2} - 12x + 24 = 12\left( {x + 1} \right)\left( {x - 2} \right)\left( {x - 1} \right)\) suy ra hàm số \(g\left( x \right)\) có 3 điểm cực trị.

Xét phương trình

\(g\left( x \right) = 0 \Leftrightarrow g\left( x \right) = 3{x^4} - 8{x^3} - 6{x^2} + 24x - m = 0 \Leftrightarrow 3{x^4} - 8{x^3} - 6{x^2} + 24x = m.\) Đồ thị hàm số \(y = \left| {g\left( x \right)} \right|\) có 7 điểm cực trị khi phương trình \(g\left( x \right) = 0\) có đúng 4 nghiệm phân biệt tương đương với hai đồ thị hàm số \(y = 3{x^4} - 8{x^3} - 6{x^2} + 24x\) và \(y = m\) có 4 giao điểm phân biệt.

Gọi \(\left( S \right)\) là tập hợp các giá trị nguyên \(m\) để đồ thị hàm số \(y = \left| {3{x^4} - 8{x^3} - 6{x^2} + 24x - m} \right|\) có 7 điểm cực trị. Tính tổng các phần tử của \(S.\)A. (ảnh 2)
Từ bảng biến thiên ta có phương trình \(g\left( x \right) = 0\) có 4 nghiệm phân biệt khi \(8 < m < 13.\)

Mà \(m \in \mathbb{Z}\) nên \(m \in \left\{ {9,10,11,12} \right\}.\) Vậy tổng các giá trị của tham số \(m\) là

\(S = 9 + 10 + 11 + 12 = 42.\)

Đáp án A

Lời giải

Gọi \({A_0}\) là số tiền ban đầu bạn An mang đi gửi tiếp kiệm, \(r\) là lãi suất đem gửi, \(x\) là số tháng bạn An cần gửi tiết kiệm để thu được cả vốn lẫn lãi bằng hoặc vượt quá 1300000 đồng.

Vì bạn An gửi tiết kiệm không thời hạn nên số tiền gốc và lãi thu được của tháng này sẽ là tiền gốc hay chính là số tiền đem gửi tiết kiệm của tháng sau.

Vậy sau 1 tháng bạn An thu được cả gốc và lãi là \({A_0} + {A_0}.r = {A_0}{\left( {1 + r} \right)^3}.\)

Sau 2 tháng bạn An thu được số tiền cả gốc và lãi là \({A_0}\left( {1 + r} \right) + {A_0}\left( {1 + r} \right).r = {A_0}{\left( {1 + r} \right)^2}.\)

Sau \(x\) tháng bạn An thu được số tiền cả gốc và lãi là \({A_0}{\left( {1 + r} \right)^x}.\)

Vậy ta có

\(1300000 \le 1000000{\left( {1 + 0,0058} \right)^x} \Leftrightarrow x \ge {\log _{1,0058}}1,3 \approx 45,366.\)

Vậy bạn An phải gửi ít nhất là 46 tháng thì thu được cả vốn và lãi bằng hoặc vượt quá 1300000 đồng.

Đáp án A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay