Câu hỏi:

13/04/2022 510

Trong không gian, cho tam giác \[ABC\] vuông tại cân \[A\], gọi \[I\]là trung điểm của \[BC\], \[BC = 2\].Tính diện tích xung quanh của hình nón, nhận được khi quay tam giác \[ABC\] xung quanh trục \[AI\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Trong không gian, cho tam giác ABC vuông tại cân A, gọi I là trung điểm của BC, BC=2.Tính  (ảnh 1)

\[R = \frac{{BC}}{2} = 1\], \[l = AB = AC = \frac{2}{{\sqrt 2 }} = \sqrt 2 .\]

\[{S_{xq}} = \pi Rl = \sqrt 2 \pi \]

Chọn đáp án C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD có đáy là hình chữ nhật, biết AB = 2a , AD = a, SA = 3a và  (ảnh 1)

Góc giữa hai mặt phẳng

Cho hình chóp S.ABCD có đáy là hình chữ nhật, biết AB = 2a , AD = a, SA = 3a và  (ảnh 2)Cho hình chóp S.ABCD có đáy là hình chữ nhật, biết AB = 2a , AD = a, SA = 3a và  (ảnh 3)là góc Cho hình chóp S.ABCD có đáy là hình chữ nhật, biết AB = 2a , AD = a, SA = 3a và  (ảnh 4). Khi đó \(\sin \varphi = \frac{{d\left( {A,\alpha } \right)}}{{d\left( {A,\Delta } \right)}}\)

Cho hình chóp S.ABCD có đáy là hình chữ nhật, biết AB = 2a , AD = a, SA = 3a và  (ảnh 5)

Gọi điểm Cho hình chóp S.ABCD có đáy là hình chữ nhật, biết AB = 2a , AD = a, SA = 3a và  (ảnh 6)là trọng tâm Cho hình chóp S.ABCD có đáy là hình chữ nhật, biết AB = 2a , AD = a, SA = 3a và  (ảnh 7), kéo dài tia Cho hình chóp S.ABCD có đáy là hình chữ nhật, biết AB = 2a , AD = a, SA = 3a và  (ảnh 8)cắtCho hình chóp S.ABCD có đáy là hình chữ nhật, biết AB = 2a , AD = a, SA = 3a và  (ảnh 9)tại Cho hình chóp S.ABCD có đáy là hình chữ nhật, biết AB = 2a , AD = a, SA = 3a và  (ảnh 10). Cho hình chóp S.ABCD có đáy là hình chữ nhật, biết AB = 2a , AD = a, SA = 3a và  (ảnh 11).

Khi đó góc giữa hai mặt phẳng\(\left( {SAC} \right)\) và \(\left( {BME} \right)\)là góc Cho hình chóp S.ABCD có đáy là hình chữ nhật, biết AB = 2a , AD = a, SA = 3a và  (ảnh 12)có\(\sin \varphi = \frac{{d\left( {A,\left( {{\rm{BEF}}} \right)} \right)}}{{d\left( {A,EG} \right)}}\) .

Ta có \(d\left( {A,\left( {{\rm{BEF}}} \right)} \right) = \frac{{2a\sqrt 3 }}{3}\),\(d\left( {A,EG} \right) = \frac{{AE.AG}}{{\sqrt {A{E^2} + A{G^2}} }} = \frac{{a\sqrt {70} }}{7}\)

\(\sin \varphi = \frac{{d\left( {A,\left( {{\rm{BEF}}} \right)} \right)}}{{d\left( {A,EG} \right)}} = \frac{{\sqrt {14} }}{{\sqrt {15} }} \to {\rm{cos}}\varphi {\rm{ = }}\frac{1}{{\sqrt {15} }}\).

Nhận xét:Bản chất câu 49 khó khăn nhất là việc xác định góc giữa hai mặt phẳng. Tứ diện \(S.ABC\)là một tứ diện đặc biệt được tách từ hình chóp \(S.ABCD\)\(SD \bot \left( {ABCD} \right)\), mặt đáy là hình vuông. Đây là bài toán khá quen thuộc. Với những bài toán xác định góc phức tạp hơn các em học sinh có thể dùng phương pháp tọa độ.

Chọn đáp án B

Lời giải

Ta có \(g'\left( x \right) = \left( {4{x^3} - 4x} \right)f'\left( {{x^4} - 2{x^2} + m} \right)\) ; \(g'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}4{x^3} - 4x = 0{\rm{ }}\left( 1 \right)\\f'\left( {{x^4} - 2{x^2} + m} \right){\rm{ = 0 }}\left( 2 \right)\end{array} \right.\)

\(\left( 1 \right) \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 1\\x = 0\end{array} \right.\) .

\(\left( 2 \right) \Leftrightarrow \left[ \begin{array}{l}{x^4} - 2{x^2} + m = - 2\\{x^4} - 2{x^2} + m = - 1\\{x^4} - 2{x^2} + m = 3\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l} - m = {x^4} - 2{x^2} + 2 = {g_1}\left( x \right)\\ - m = {x^4} - 2{x^2} + 1 = {g_2}\left( x \right)\\ - m = {x^4} - 2{x^2} - 3 = {g_3}\left( x \right)\end{array} \right.\).

Ta có bảng biến thiên của các hàm số \({g_1}\left( x \right),{g_2}\left( x \right),{g_3}\left( x \right)\) như hình vẽ:

Cho hàm số bậc bốn y=f(x)có đồ thị hàm sốy=f'(x) như hình bên dưới. Gọi S là tập hợp (ảnh 2)

Từ bảng biến trên, ta dễ thấy: với \[ - m \le - 4 \Leftrightarrow m \ge 4\] hàm số \(g\left( x \right) = f\left( {{x^4} - 2{x^2} + m} \right)\) có đúng 3 điểm cực trị.

Do đó: \(S = \left\{ {4;5;6;7;...;2020} \right\}\)

Vậy tổng tất cả các phần tử của \(S\) là: \(4 + 5 + 6 + ... + 2020 = \frac{{\left( {4 + 2020} \right)2017}}{2} = 2041204\).

Chọn đáp án B

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP