Câu hỏi:

13/04/2022 405 Lưu

Trên mặt phẳng, cho hình vuông có cạnh bằng 2. Chọn ngẫu nhiên một điểm thuộc hình vuông đã cho (kể cả các điểm nằm trên cạnh của hình vuông). Gọi P là xác suất để điểm được chọn thuộc vào hình tròn nội tiếp hình vuông đã cho (kể cả các điểm nằm trên đường tròn nội tiếp hình vuông), giá trị gần nhất của P là 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Trên mặt phẳng, cho hình vuông có cạnh bằng 2. Chọn ngẫu nhiên một điểm thuộc hình vuông đã cho (kể cả các điểm nằm trên cạnh của hình vuông). Gọi  là xác suất để điểm được chọn thuộc vào hình tròn nội tiếp hình vuông đã cho (kể cả các điểm nằm trên đường tròn nội tiếp hình vuông), giá trị gần nhất của  là  (ảnh 1)

Bán kính đường tròn nội tiếp hình vuông: R=1.

Xác suất P chính là tỉ lệ giữa diện tích hình tròn trên diện tích hình vuông.

Do đó: P=π.12220,785.

Chọn đáp án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đường thẳng đã cho có véc-tơ chỉ phương u=2;3;1 và đi qua điểm M1;0;2 nên có phương trình chính tắc là x12=y3=z21.

Chọn đáp án D.

Lời giải

Ta có g'x=2x12.f'x+1x1. Cho g'x=0f'x+1x1=0x+1x1=a,a<1x+1x1=b,1<b<0x+1x1=c,0<c<2x+1x1=d,d>2

Xét hàm số hx=x+1x1.

Tập xác định D=\1. Ta có h'x=2x12>0,xD.

Bảng biến thiên

Cho hàm số  liên tục trên  bảng biến thiên của hàm số  như sau: Số điểm cực trị của hàm số  là (ảnh 2)

Dựa vào bảng biến thiên, ta thấy: Phương trình hx=a,hx=b,hx=c,hx=d đều có 2 nghiệm phân biệt.

Vậy hàm số fx=fx+1x1 có 8 cực trị.

Chọn đáp án A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP