Câu hỏi:

13/04/2022 262

Giá trị lớn nhất của hàm số y=x43x2+2 trên đoạn 0;3bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hàm số y liên tục trên đoạn 0;3 và có đạo hàm y'=4x36x.

Ta có y'=04x36x=0x=0x=±32.

Ta có y0=2,y3=56,y32=14.

Do đó giá trị lớn nhất của hàm số y=x43x2+2 trên đoạn 0;3 bằng 56.

Chọn đáp án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đường thẳng đã cho có véc-tơ chỉ phương u=2;3;1 và đi qua điểm M1;0;2 nên có phương trình chính tắc là x12=y3=z21.

Chọn đáp án D.

Lời giải

Ta có g'x=2x12.f'x+1x1. Cho g'x=0f'x+1x1=0x+1x1=a,a<1x+1x1=b,1<b<0x+1x1=c,0<c<2x+1x1=d,d>2

Xét hàm số hx=x+1x1.

Tập xác định D=\1. Ta có h'x=2x12>0,xD.

Bảng biến thiên

Cho hàm số  liên tục trên  bảng biến thiên của hàm số  như sau: Số điểm cực trị của hàm số  là (ảnh 2)

Dựa vào bảng biến thiên, ta thấy: Phương trình hx=a,hx=b,hx=c,hx=d đều có 2 nghiệm phân biệt.

Vậy hàm số fx=fx+1x1 có 8 cực trị.

Chọn đáp án A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP