Câu hỏi:

14/04/2022 191

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên SAB là tam giác đều nằm trong mặt phẳng vuông góc với mặt đáy ABCD. Thể tích khối chóp S.ABCD

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. (ảnh 1)

Gọi H  là trung điểm cạnh AB . Vì SHABSHABCD .

 SABCD=a2SH=a32 .

Thể tích khối chóp S.ABCD  là V=13SABCD.SH=a336 .

Chọn đáp án D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: nOxy=1;1;0, nOxy=0;0;1.
Gọi d là đường thẳng đi qua A đồng thời song song với (P) và mặt phẳng (Oxy). Khi đó:
udnPudn(Oxy)ud=nP,nOxy=1;1;0. Vậy d:x=2+ty=tz=1.
Chọn đáp án D

Lời giải

Gọi z=x+yi,  x,y.
Ta có:
z+1i=3x+12+y12=9C;
Suy ra, tập hợp tất cả các điểm biểu diễn số phức z là đường tròn (C), có tâm là I1;1 và bán kính R=3.
Ta có:
A=2z4+5i+z+17i=2x42+y+52+x+12+y72
=2x42+y+52+x+12+y72+3x+12+y129
=2x42+y+52+4x2+8x+4y220y+29
=2x42+y+52+2x2+2x+y210y+294
=2x42+y+52+x+12+y522.
Cho số phức  z thay đổi thỏa mãn |z+1-i|=3 . Giá trị nhỏ nhất  (ảnh 1)
Gọi Mx;yC.
A=2z4+5i+z+17i=2MA+MB,  A4;5;B1;7.
A=2MA+MB=2MA+MC,  C1;52.
Ta có: IC=0;32IC=32<RC.
Suy ra, điểm C nằm trong đường tròn (C).
Vậy, đường thẳng AC cắt đường tròn (C) tại hai điểm.
Do đó, để A=2MA+MC đạt giá trị nhỏ nhất thì M phải nằm giữa hai điểm A và C.
A=2MA+MC2AC,   AC=5132.
A513=ab.
Vậy, a+b=18.
Chọn đáp án B

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP