Câu hỏi:

15/04/2022 390 Lưu

Cho hình nón \(\left( N \right)\) có bán kính đường tròn đáy bằng \(a\sqrt 3 \) và đường sinh tạo với đáy một góc \(30^\circ \). Thể tích khối nón \(\left( N \right)\) bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Cho hình nón (N) có bán kính đường tròn đáy bằng a.căn bậc hai của 3 và đường sinh  (ảnh 1)

Ta có: \(\tan 30^\circ = \frac{1}{{\sqrt 3 }} = \frac{h}{R} = \frac{h}{{a\sqrt 3 }} \Rightarrow h = a\).

Vậy thể tích khối nón \(\left( N \right)\)bằng: \(V = \frac{1}{3}\pi {R^2}h = \frac{1}{3}\pi {\left( {a\sqrt 3 } \right)^2}a = \pi {a^3}\)

Chọn đáp án B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Gọi \[{N_0}\] là lượng vi rút trong cơ thể ông A ngay khi nhập viện.

Sau \[n\] ngày \[\left( {n \in {\mathbb{N}^*}} \right)\], lượng vi rút trong cơ thể ông A là \[N = {N_0}{\left( {1 - 10\% } \right)^n}\].

Ông A được xuất viện khi

\[\frac{N}{{{N_0}}} \le 30\% \Rightarrow {\left( {1 - 10\% } \right)^n} \le 30\% \Rightarrow {\left( {\frac{9}{{10}}} \right)^n} \le \frac{3}{{10}} \Rightarrow n \ge {\log _{\frac{9}{{10}}}}\frac{3}{{10}} \approx 11,4 \Rightarrow n \ge 12\,\left( {n \in {\mathbb{N}^*}} \right)\].

Vậy sau ít nhất 12 ngày thì ông A được xuất viện.

Chọn đáp án C

 

Lời giải

Lời giải

Số hạng tổng quát của cấp số nhân là: \({u_n} = {u_1}.{q^{n - 1}}\)

Số số hạng thứ 4 của cấp số nhân là: \({u_4} = 2.{\left( { - 3} \right)^3} = - 54\).

Chọn đáp án C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP