Câu hỏi:

15/04/2022 594 Lưu

Cho hàm số \(y = f(x)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình vẽ. Hàm số \(y = f(x)\) đồng biến trên khoảng nào sau đây?

Cho hàm số y=f(x) liên tục trên R  và có bảng biến thiên như hình vẽ. Hàm số y=f(x) đồng biến trên khoảng nào sau đây? (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Dựa vào bảng biến thiên ta thấy, hàm số đồng biến trên các khoảng \(( - \infty \,,\,1)\); \((2\,,\,3)\); \((3\,,\, + \infty )\).

Chọn đáp án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Gọi \[{N_0}\] là lượng vi rút trong cơ thể ông A ngay khi nhập viện.

Sau \[n\] ngày \[\left( {n \in {\mathbb{N}^*}} \right)\], lượng vi rút trong cơ thể ông A là \[N = {N_0}{\left( {1 - 10\% } \right)^n}\].

Ông A được xuất viện khi

\[\frac{N}{{{N_0}}} \le 30\% \Rightarrow {\left( {1 - 10\% } \right)^n} \le 30\% \Rightarrow {\left( {\frac{9}{{10}}} \right)^n} \le \frac{3}{{10}} \Rightarrow n \ge {\log _{\frac{9}{{10}}}}\frac{3}{{10}} \approx 11,4 \Rightarrow n \ge 12\,\left( {n \in {\mathbb{N}^*}} \right)\].

Vậy sau ít nhất 12 ngày thì ông A được xuất viện.

Chọn đáp án C

 

Lời giải

Lời giải

Số hạng tổng quát của cấp số nhân là: \({u_n} = {u_1}.{q^{n - 1}}\)

Số số hạng thứ 4 của cấp số nhân là: \({u_4} = 2.{\left( { - 3} \right)^3} = - 54\).

Chọn đáp án C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP