Câu hỏi:

15/04/2022 323

Cho hai số phức \({z_1} = 2 + 6i\) và \({z_2} = 1 - 5i\). Phần ảo của số phức \({z_1} + {z_2}\) bằng:

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Ta có:\({z_1} + {z_2} = 3 + i\).

Vậy phần ảo của \({z_1} + {z_2}\) bằng 1.

Chọn đáp án B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Ông A bị nhiễm một loại vi rút nên phải nhập viện và được điều trị ngay lập tức. Kể từ ngày bắt đầu nhập viện, sau mỗi ngày điều trị thì số lượng virut trong cơ thể ông A giảm đi \[10\% \] so với ngày trước đó. Hỏi sau ít nhất bao nhiêu ngày thì ông A sẽ được xuất viện biết ông được xuất viện khi lượng virut trong cơ thể của ông không vượt quá \[30\% \]?

Xem đáp án » 15/04/2022 4,554

Câu 2:

Có bao nhiêu số tự nhiên lẻ có 6 chữ số đôi một khác nhau trong đó có 3 chữ số lẻ và 3 chữ số chẵn?

Xem đáp án » 15/04/2022 2,662

Câu 3:

Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) sao cho phương trình \(\log _2^2x - \left( {m + 1} \right){\log _2}x + 2m - 3 = 0\,\)có đúng 2 nghiệm phân biệt thuộc khoảng \(\left( {2\,;\,16} \right)\) ?

Xem đáp án » 15/04/2022 2,088

Câu 4:

Thể tích của khối lăng trụ có đáy là hình vuông cạnh 2 và chiều cao 3 bằng

Xem đáp án » 15/04/2022 1,674

Câu 5:

Số phức liên hợp của số phức \(z = 2i - 1\) là:

Xem đáp án » 15/04/2022 1,558

Câu 6:

Cho hàm số \(y = f\left( x \right)\)là hàm bậc 4 có đồ thị \[\left( C \right)\] và \[d\] là tiếp tuyến của đồ thị \[\left( C \right)\] tại 2 điểm như hình vẽ.

 Cho hàm số y=f(x) là hàm bậc 4 có đồ thị (C) và d là tiếp tuyến của đồ thị (C)  (ảnh 1)

Biết diện tích hình phẳng giới hạn bởi đồ thị \[\left( C \right)\] và đường thẳng \[d\] là \(\frac{{11}}{3}\). Khi đó \(\int\limits_{ - 1}^1 {f\left( x \right){\rm{d}}x} \) bằng:

Xem đáp án » 15/04/2022 1,362

Câu 7:

Cho \[f\left( x \right)\] là hàm số đa thức có một phần đồ thị của hàm \[f'\left( x \right)\] như hình vẽ bên. Gọi \[F\left( x \right)\] là một nguyên hàm của hàm số \[f\left( x \right)\]. Tìm tất cả các giá trị của tham số \[m\] để hàm số \[y = F\left( x \right) + \left( {m - 1} \right)x + 2020\] đồng biến trên khoảng \[\left( { - 1\,;\,4} \right)\].

Cho f(x) là hàm số đa thức có một phần đồ thị của hàm f'(x) như hình vẽ bên.  (ảnh 1)

Xem đáp án » 15/04/2022 1,080

Bình luận


Bình luận