Câu hỏi:

15/04/2022 905 Lưu

Trong không gian \[Oxyz\], hình chiếu vuông góc của điểm \(M\left( {9\,;\,8\,;\, - 1} \right)\) trên mặt phẳng \(Oyz\) có tọa độ là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Ta có, phương trình mặt phẳng \(Oyz\) là \(x = 0\,\,(1)\), có một véc tơ pháp tuyến \(\overrightarrow n \left( {1\,;\,0\,;\,0} \right)\).

Gọi \(d\)là đường thẳng qua \(M\left( {9\,;\,8\,;\, - 1} \right)\) và vuông góc với mặt phẳng \(Oyz\), khi đó đường thẳng \(d\) nhận \(\overrightarrow n \left( {1\,;\,0\,;\,0} \right)\) là một véc tơ chỉ phương.

Phương trình đường thẳng \(d\) là \(\left\{ \begin{array}{l}x = 9 + t\\y = 8\\z = - 1\end{array} \right.\,\,\,\) với \(t\) là tham số.\(\left( 2 \right)\)

Hình chiếu vuông góc của điểm \(M\left( {9\,;\,8\,;\, - 1} \right)\) trên mặt phẳng \(Oyz\) là giao điểm \(A\) của \(d\) và mặt phẳng \(Oyz\). Thay \(\left( 2 \right)\)vào \(\left( 1 \right)\)ta có \(9 + t = 0 \Rightarrow t = - 9\).

Vậy tọa độ hình chiếu vuông góc của điểm \(M\left( {9\,;\,8\,;\, - 1} \right)\) trên mặt phẳng \(Oyz\) là: \(A\left( {0\,;\,8\,;\, - 1} \right)\).

Chọn đáp án D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Gọi \[{N_0}\] là lượng vi rút trong cơ thể ông A ngay khi nhập viện.

Sau \[n\] ngày \[\left( {n \in {\mathbb{N}^*}} \right)\], lượng vi rút trong cơ thể ông A là \[N = {N_0}{\left( {1 - 10\% } \right)^n}\].

Ông A được xuất viện khi

\[\frac{N}{{{N_0}}} \le 30\% \Rightarrow {\left( {1 - 10\% } \right)^n} \le 30\% \Rightarrow {\left( {\frac{9}{{10}}} \right)^n} \le \frac{3}{{10}} \Rightarrow n \ge {\log _{\frac{9}{{10}}}}\frac{3}{{10}} \approx 11,4 \Rightarrow n \ge 12\,\left( {n \in {\mathbb{N}^*}} \right)\].

Vậy sau ít nhất 12 ngày thì ông A được xuất viện.

Chọn đáp án C

 

Lời giải

Lời giải

Số hạng tổng quát của cấp số nhân là: \({u_n} = {u_1}.{q^{n - 1}}\)

Số số hạng thứ 4 của cấp số nhân là: \({u_4} = 2.{\left( { - 3} \right)^3} = - 54\).

Chọn đáp án C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP