Câu hỏi:
15/04/2022 972Có bao nhiêu cặp số nguyên \(a,\,\,b\) thỏa mãn đồng thời các điều kiện \({a^2} + {b^2} >1\) và \({a^2} + {b^2} - 3 \le {\log _{{a^2} + {b^2}}}\left( {\frac{{{b^2}\left( {{a^2} + {b^2} + 4} \right) + 4{a^2}}}{{{a^2} + 2{b^2}}}} \right)\)?
Câu hỏi trong đề: Bộ đề minh họa môn Toán THPT Quốc gia năm 2022 (30 đề) !!
Quảng cáo
Trả lời:
Lời giải
Ta có \({a^2} + {b^2} - 3 \le {\log _{{a^2} + {b^2}}}\left( {\frac{{{b^2}\left( {{a^2} + {b^2} + 4} \right) + 4{a^2}}}{{{a^2} + 2{b^2}}}} \right)\)
\( \Leftrightarrow {a^2} + {b^2} - 3 \le {\log _{{a^2} + {b^2}}}\left( {\frac{{\left( {{b^2} + 4} \right)\left( {{a^2} + {b^2}} \right)}}{{{a^2} + 2{b^2}}}} \right)\)
\( \Leftrightarrow {a^2} + {b^2} - 4 \le {\log _{{a^2} + {b^2}}}\left( {{b^2} + 4} \right) - {\log _{{a^2} + {b^2}}}\left( {{a^2} + 2{b^2}} \right)\)
\( \Leftrightarrow {\log _{{a^2} + {b^2}}}\left( {{a^2} + 2{b^2}} \right) + \left( {{a^2} + 2{b^2}} \right) \le {\log _{{a^2} + {b^2}}}\left( {{b^2} + 4} \right) + \left( {{b^2} + 4} \right)\) (*)
Xét hàm số \(f\left( t \right) = {\log _{{a^2} + {b^2}}}t + t\) trên \(\left( {0; + \infty } \right)\).
Ta có \(f'\left( t \right) = \frac{1}{{t.\ln \left( {{a^2} + {b^2}} \right)}} + 1 >0,\forall t \in \left( {0; + \infty } \right)\). Do đó hàm số đồng biến trên \(\left( {0; + \infty } \right)\).
\[\left( * \right) \Leftrightarrow f\left( {{a^2} + 2{b^2}} \right) \le f\left( {{b^2} + 4} \right) \Leftrightarrow {a^2} + 2{b^2} \le {b^2} + 4 \Leftrightarrow {a^2} + {b^2} \le 4\]
Vậy, \(a,\,\,b\) thỏa mãn \[1 < {a^2} + {b^2} \le 4\]. Từ đó ta có 8 cặp số \(\left( {a\,;\,\,b} \right)\) thỏa mãn bài toán là \(\left( { - 2; - 2} \right),\left( { - 2; - 1} \right),\left( { - 1; - 2} \right),\left( { - 1; - 1} \right),\left( {1\,;\,1} \right),\left( {1\,;\,2} \right),\left( {2\,;\,1} \right),\left( {2\,;\,2} \right)\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
Đã bán 986
Đã bán 1,1k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Ông A bị nhiễm một loại vi rút nên phải nhập viện và được điều trị ngay lập tức. Kể từ ngày bắt đầu nhập viện, sau mỗi ngày điều trị thì số lượng virut trong cơ thể ông A giảm đi \[10\% \] so với ngày trước đó. Hỏi sau ít nhất bao nhiêu ngày thì ông A sẽ được xuất viện biết ông được xuất viện khi lượng virut trong cơ thể của ông không vượt quá \[30\% \]?
Câu 2:
Cho cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu tiên \({u_1} = 2\) và công bội \(q = - 3\). Số số hạng thứ 4 của cấp số nhân bằng
Câu 3:
Câu 4:
Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) sao cho phương trình \(\log _2^2x - \left( {m + 1} \right){\log _2}x + 2m - 3 = 0\,\)có đúng 2 nghiệm phân biệt thuộc khoảng \(\left( {2\,;\,16} \right)\) ?
Câu 5:
Thể tích của khối lăng trụ có đáy là hình vuông cạnh 2 và chiều cao 3 bằng
Câu 6:
Cho \(a\) là một số thực dương khác 1, khi đó \({\log _a}\sqrt[3]{a}\)bằng:
Câu 7:
Cho hàm số \(y = f\left( x \right)\)là hàm bậc 4 có đồ thị \[\left( C \right)\] và \[d\] là tiếp tuyến của đồ thị \[\left( C \right)\] tại 2 điểm như hình vẽ.
Biết diện tích hình phẳng giới hạn bởi đồ thị \[\left( C \right)\] và đường thẳng \[d\] là \(\frac{{11}}{3}\). Khi đó \(\int\limits_{ - 1}^1 {f\left( x \right){\rm{d}}x} \) bằng:
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 5)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận