Câu hỏi:
15/01/2020 5,373Cho đa diện H biết rằng mỗi mặt của H đều là những đa giác có số cạnh lẻ và tồn tại ít nhất một mặt có số cạnh khác với các mặt còn lại. Hỏi khẳng định nào đúng trong các khẳng định sau?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Chọn đáp án D
Gọi tổng số các mặt của (H) là m và tổng số các cạnh của (H) là c.
Ta có
Trong đó, một mặt nào đó có số cạnh là
Do đó m chia hết cho 2. Hơn nữa có ít nhất một mặt là ngũ giác nên tổng số mặt lớn hơn 5, do đó tổng số cạnh lớn hơn 9 và tổng số đỉnh lớn hơn 5.
Chú ý : lấy 1 ví dụ cụ thể để ra đáp án. Ví dụ hình chóp có đáy là ngũ giác có tổng số cạnh là một số chẵn.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình nón đỉnh S, đáy là đường tròn (0; 5). Một mặt phẳng đi qua đỉnh của hình nón cắt đường tròn đáy tại hai điểm A và B sao cho SA = AB = 8. Tính khoảng cách từ O đến (SAB).
Câu 2:
Cho hình chóp S.ABCD có đáy ABCD là một tứ giác (AB không song song CD). Gọi N là trung điểm của SD, M là trung điểm nằm trên cạnh SB sao cho SM = 2MB, O là giao điểm của AC và BD. Cặp đường thẳng nào sau đây cắt nhau.
Câu 3:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, E là trung điểm của SA, F, G lần lượt là các điểm thuộc cạnh BC, CD (CF<FB; GC<GD). Thiết diện của hình chóp cắt bởi (EFG) là :
Câu 4:
Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh bằng 1. Cạnh bên SA vuông góc với mặt phẳng ABCD và SC = . Tính thể tích khối chóp S. ABCD
Câu 5:
Cho hình chóp đều S.ABCD có độ dài cạnh đáy bằng a. Gọi G là trọng tâm tam giác SAC. Mặt phẳng chứa AB và đi qua G cắt các cạnh, SC SD lần lượt tại M và N. Biết mặt bên của hình chóp tạo với đáy một góc bằng . Thể tích khối chóp S. ABMN bằng
Câu 6:
Cho hình chóp S.ABC. Gọi M, N lần lượt là trung điểm của SA và BC. P là điểm nằm trên cạnh AB sao cho . Gọi Q là giao điểm của SC với mặt phẳng (MNP). Tính
Câu 7:
Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh a, BCD = và AA' = . Hình chiếu vuông góc của A’ lên mặt phẳng ABCD trùng với giao điểm của AC và BD. Tính theo a thể tích khối hộp ABCD.A’B’C’D’.
về câu hỏi!