Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Tam giác SAB vuông cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Thể tích của khối chóp S.ABC bằng
Quảng cáo
Trả lời:
Chọn đáp án B
Kẻ \(SH \bot AB \Rightarrow SH \bot \left( {ABC} \right)\)
\( \Rightarrow {V_{S.ABC}} = \frac{1}{3}SH.{S_{ABC}} = \frac{1}{3}.\frac{{AB}}{2}.\frac{{A{B^2}\sqrt 3 }}{4} = \frac{{{a^3}\sqrt 3 }}{{24}}.\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn đáp án D
Ta có B là trung điểm của đoạn thẳng AK\( \Rightarrow \left\{ \begin{array}{l}\frac{{1 + {x_K}}}{2} = 2\\\frac{{ - 3 + {y_K}}}{2} = - 2\\\frac{{2 + {z_K}}}{2} = 3\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_K} = 3\\{y_K} = - 1\\{z_K} = 4\end{array} \right. \Rightarrow K\left( {3; - 1;4} \right)\).
Lời giải
Chọn đáp án B
Ta có \(P = {\log _{2020!}}2 + {\log _{2020!}}3 + {\log _{2020!}}4 + ... + {\log _{2020!}}2020\)
\( = {\log _{2020!}}\left( {2.3.4...2020} \right) = {\log _{2020!}}\left( {2020!} \right) = 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.