Cho số phức \[z = a + bi\] \[\left( {a,{\rm{ }}b \in \mathbb{R}} \right)\] thỏa mãn \[\left| {z + 1} \right| = \left| {z + 5} \right| = 2\sqrt 5 \]. Tính giá trị của biểu thức \[P = a + {b^2}.\]
A.\[P = 1.\]
B.\[P = - 1.\]
C.\[P = 13.\]
D.\[P = 19.\]
Quảng cáo
Trả lời:

Chọn đáp án C
Giả sử \(z = a + bi{\rm{ }}\left( {a,b \in \mathbb{R}} \right)\)
Ta có \(\left\{ \begin{array}{l}\left| {z + 1} \right| = 2\sqrt 5 \\\left| {z + 5} \right| = 2\sqrt 5 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left| {a + bi + 1} \right| = 2\sqrt 5 \\\left| {a + bi + 5} \right| = 2\sqrt 5 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\sqrt {{{\left( {a + 1} \right)}^2} + {b^2}} = 2\sqrt 5 \\\sqrt {{{\left( {a + 5} \right)}^2} + {b^2}} = 2\sqrt 5 \end{array} \right.\)
\( \Rightarrow {\left( {a + 1} \right)^2} + {b^2} = {\left( {a + 5} \right)^2} + {b^2} \Leftrightarrow a = - 3 \Rightarrow 4 + {b^2} = 20 \Leftrightarrow {b^2} = 16 \Rightarrow a + {b^2} = 13.\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A.\[K\left( {1;1;1} \right).\]
B.\[K\left( {5; - 3;7} \right).\]
C.\[K\left( {6; - 2;8} \right).\]
D.\[K\left( {3; - 1;4} \right).\]
Lời giải
Chọn đáp án D
Ta có B là trung điểm của đoạn thẳng AK\( \Rightarrow \left\{ \begin{array}{l}\frac{{1 + {x_K}}}{2} = 2\\\frac{{ - 3 + {y_K}}}{2} = - 2\\\frac{{2 + {z_K}}}{2} = 3\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_K} = 3\\{y_K} = - 1\\{z_K} = 4\end{array} \right. \Rightarrow K\left( {3; - 1;4} \right)\).
Câu 2
A.\[P = 2020.\]
B.\[P = 2020!.\]
C.\[P = \frac{1}{{2020}}.\]
D.\[P = 1.\]
Lời giải
Chọn đáp án B
Ta có \(P = {\log _{2020!}}2 + {\log _{2020!}}3 + {\log _{2020!}}4 + ... + {\log _{2020!}}2020\)
\( = {\log _{2020!}}\left( {2.3.4...2020} \right) = {\log _{2020!}}\left( {2020!} \right) = 1\).
Câu 3
A.\[\Delta:\frac{{x - 2}}{2} = \frac{y}{1} = \frac{{z - 2}}{{ - 1}}.\]
B.\[\Delta:\frac{{x - 2}}{2} = \frac{y}{{ - 5}} = \frac{{z - 2}}{{ - 1}}.\]
C.\[\Delta:\frac{{x - 3}}{3} = \frac{{y - 1}}{1} = \frac{{z - 1}}{1}.\]
D.\[\Delta:\frac{{x - 3}}{2} = \frac{{y - 1}}{{ - 5}} = \frac{{z - 1}}{{ - 1}}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A.\[\left( { - \frac{1}{2};\frac{7}{4};\frac{1}{4}} \right)\]
B.\[\left( {\frac{1}{3};\frac{7}{4};\frac{1}{4}} \right)\]
C.\[\left( { - \frac{1}{3};\frac{7}{4}; - \frac{1}{4}} \right)\]
D.\[\left( { - \frac{1}{2};\frac{7}{4}; - \frac{1}{4}} \right)\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A.\[\left\{ {\begin{array}{*{20}{l}}{x = 1 - 3t}\\{y = 0}\\{z = 1 + t}\end{array}} \right..\]
B.\[\left\{ {\begin{array}{*{20}{l}}{x = 1 - 3t}\\{y = 0}\\{z = 1 - t}\end{array}} \right..\]
C.\[\left\{ {\begin{array}{*{20}{l}}{x = 1 - 3t}\\{y = t}\\{z = 1 + t}\end{array}} \right..\]
D.\[\left\{ {\begin{array}{*{20}{l}}{x = 1 + 3t}\\{y = 0}\\{z = 1 + t}\end{array}} \right..\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A.\[\vec u = \left( {2;3;1} \right).\]
B.\[\vec u = \left( {2;1; - 2} \right).\]
C.\[\vec u = \left( {2; - 3;1} \right).\]
D.\[\vec u = \left( {2;1;2} \right).\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A.\[V = \frac{{128\pi }}{3}.\]
B.\[V = 128\pi .\]
C.\[V = \frac{{256\pi }}{3}.\]
D.\[V = 96\pi .\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.