Câu hỏi:

20/04/2022 288 Lưu

Trong buổi sinh nhật của thầy Bắc, có 15 đôi yêu nhau tham dự. Mỗi bạn trai bắt tay 1 lần với mọi người trừ bạn gái mình. Các bạn gái không bắt tay với nhau. Hỏi có bao nhiêu cái bắt tay?

A.330.

B.315.

C.420.

D.405.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn đáp án B

Với 15 đôi yêu nhau thì có 30 người.

Chọn 2 người từ 30 người để bắt tay có \(C_{30}^2\) cách.

Chọn 2 bạn gái từ 15 bạn gái để bắt tay có \(C_{15}^2\) cách.

15 bạn trai bắt tay với bạn gái của mình có 15 cái bắt tay.

Vậy có tất cả \(C_{30}^2 - C_{15}^2 - 15 = 315\)cái bắt tay.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A.\[K\left( {1;1;1} \right).\]

B.\[K\left( {5; - 3;7} \right).\]

C.\[K\left( {6; - 2;8} \right).\]

D.\[K\left( {3; - 1;4} \right).\]

Lời giải

Chọn đáp án D

Ta có B là trung điểm của đoạn thẳng AK\( \Rightarrow \left\{ \begin{array}{l}\frac{{1 + {x_K}}}{2} = 2\\\frac{{ - 3 + {y_K}}}{2} = - 2\\\frac{{2 + {z_K}}}{2} = 3\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_K} = 3\\{y_K} = - 1\\{z_K} = 4\end{array} \right. \Rightarrow K\left( {3; - 1;4} \right)\).

Lời giải

Chọn đáp án B

Ta có \(P = {\log _{2020!}}2 + {\log _{2020!}}3 + {\log _{2020!}}4 + ... + {\log _{2020!}}2020\)

\( = {\log _{2020!}}\left( {2.3.4...2020} \right) = {\log _{2020!}}\left( {2020!} \right) = 1\).

Câu 3

A.\[\Delta:\frac{{x - 2}}{2} = \frac{y}{1} = \frac{{z - 2}}{{ - 1}}.\]

B.\[\Delta:\frac{{x - 2}}{2} = \frac{y}{{ - 5}} = \frac{{z - 2}}{{ - 1}}.\]

C.\[\Delta:\frac{{x - 3}}{3} = \frac{{y - 1}}{1} = \frac{{z - 1}}{1}.\]

D.\[\Delta:\frac{{x - 3}}{2} = \frac{{y - 1}}{{ - 5}} = \frac{{z - 1}}{{ - 1}}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A.\[\left( { - \frac{1}{2};\frac{7}{4};\frac{1}{4}} \right)\]

B.\[\left( {\frac{1}{3};\frac{7}{4};\frac{1}{4}} \right)\]

C.\[\left( { - \frac{1}{3};\frac{7}{4}; - \frac{1}{4}} \right)\]

D.\[\left( { - \frac{1}{2};\frac{7}{4}; - \frac{1}{4}} \right)\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A.\[\left\{ {\begin{array}{*{20}{l}}{x = 1 - 3t}\\{y = 0}\\{z = 1 + t}\end{array}} \right..\]

B.\[\left\{ {\begin{array}{*{20}{l}}{x = 1 - 3t}\\{y = 0}\\{z = 1 - t}\end{array}} \right..\]

C.\[\left\{ {\begin{array}{*{20}{l}}{x = 1 - 3t}\\{y = t}\\{z = 1 + t}\end{array}} \right..\]

D.\[\left\{ {\begin{array}{*{20}{l}}{x = 1 + 3t}\\{y = 0}\\{z = 1 + t}\end{array}} \right..\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A.\[\vec u = \left( {2;3;1} \right).\]

B.\[\vec u = \left( {2;1; - 2} \right).\]

C.\[\vec u = \left( {2; - 3;1} \right).\]

D.\[\vec u = \left( {2;1;2} \right).\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP