Câu hỏi:

20/04/2022 340

Tính thể tích của khối tròn xoay tạo thành khi quay quanh trục hoành hình phẳng giới hạn bởi đổ thị hai hàm số y=x,y=6x  và trục hoành.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Thể tích của khối tròn xoay tạo thành bằng tổng thể tích khối tròn xoay tạo thành khi quay hình phẳng OAC quanh trục Ox với thể tích khối tròn xoay tạo thành khi quay hình phẳng ACD quanh trục Ox.

Thể tích khối tròn xoay tạo thành khi quay hình phẳng OAC quanh trục Ox bằng 

V1=π04x2dx=π12x240=8π

 Thể tích khối tròn xoay tạo thành khi quay hình phẳng ACD quanh trục Ox V2=13πAC2.CD=8π3

Thể tích cần tìm là V=V1+V2=32π3

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án B

Cách 1. Xét hàm số g(x) = f(x + 1), có g'(x) = f'(x + 1).

Ta có:  g'x=0f'x+1=0x+1=1x+1=0x+1=1x=2x=1x=0

Bảng biến thiên của hàm g(x)

Cho hàm số y = f(x) có bảng biến thiên như hình vẽ bên dưới . Hàm số g(x) = f (x +1) đạt cực tiểu tại (ảnh 2)


Từ bảng biến thiên của hàm g(x), ta thấy hàm số g(x) = f(x +1) đạt cực tiểu tại x = -1. 

Cách 2. Đồ thị hàm số g(x) có được bằng cách tịnh tiến đồ thị hàm số f(x) sang trái 1 đơn vị, mà đồ thị hàm số f(x) đạt cực tiểu tại x = 0 nên hàm số g(x) = f(x +1) đạt cực tiểu tại x = -1.

Lời giải

Đáp án A

Kẻ AH vuông góc BC khi đó ta có: BC=a3;SH=a113;AH=a63;SA=a53

Thể tích của khối chóp S.ABC là VS.ABC=13SA.SΔABC=a53.a222=a31018

Suy ra dA,SBC=3VS.ABCVΔSBC=a33033.

Cho hình chóp S.ABC có SA, AB, AC đôi một vuông góc, AB = a,AC = a căn bặc 2 của 2 và diện tích tam giác SBC bằng a^2. căn bậc 2 của 33 /6  . Khoảng cách từ điểm A đến măt phẳng (SBC) bằng (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay