Câu hỏi:

20/04/2022 1,328

Trong không gian với hệ tọa độ Oxyz , cho mặt cầu (S): x2 + y2 + z2 = 8 và điểm M12;32;0  . Đường thẳng d thay đổi đi qua M và cắt mặt cầu (S) tại hai điểm A, B phân biệt. Tính diện tích S lớn nhất của tam giác OAB.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

(S): O(0;0;0)R=22

OM=1<22  nên M nằm trong (S)

Dựng OHAB(HAB) , đặt OH = x. Khi đó 0xOM=1

Khi đó diện tích tam giác OAB là: SOAB=12OH.AB=12OH.2HB=OH.OB2OH2=OH8OH2=x8x2=f(x)

Xét hàm số f(x)=x8x2 với x0;1

f'(x)=8x2x28x2=82x28x2

f'(x)=0x=2(L)x=2(L)

 f(0)=0,f(1)=7 . Vậy maxf0;1(x)=7Smax=7.
Trong không gian với hệ tọa độ Oxyz , cho mặt cầu (S): x2 + y2 + z2 = 8 và điểm M(1/2; căn bậc 2 của 3/2;0) (ảnh 1)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án B

Cách 1. Xét hàm số g(x) = f(x + 1), có g'(x) = f'(x + 1).

Ta có:  g'x=0f'x+1=0x+1=1x+1=0x+1=1x=2x=1x=0

Bảng biến thiên của hàm g(x)

Cho hàm số y = f(x) có bảng biến thiên như hình vẽ bên dưới . Hàm số g(x) = f (x +1) đạt cực tiểu tại (ảnh 2)


Từ bảng biến thiên của hàm g(x), ta thấy hàm số g(x) = f(x +1) đạt cực tiểu tại x = -1. 

Cách 2. Đồ thị hàm số g(x) có được bằng cách tịnh tiến đồ thị hàm số f(x) sang trái 1 đơn vị, mà đồ thị hàm số f(x) đạt cực tiểu tại x = 0 nên hàm số g(x) = f(x +1) đạt cực tiểu tại x = -1.

Lời giải

Đáp án A

Kẻ AH vuông góc BC khi đó ta có: BC=a3;SH=a113;AH=a63;SA=a53

Thể tích của khối chóp S.ABC là VS.ABC=13SA.SΔABC=a53.a222=a31018

Suy ra dA,SBC=3VS.ABCVΔSBC=a33033.

Cho hình chóp S.ABC có SA, AB, AC đôi một vuông góc, AB = a,AC = a căn bặc 2 của 2 và diện tích tam giác SBC bằng a^2. căn bậc 2 của 33 /6  . Khoảng cách từ điểm A đến măt phẳng (SBC) bằng (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay