Câu hỏi:

20/04/2022 1,350

Cho hàm số y = f(x) có đạo hàm liên tục trên  . Biết f(0) = 0 và đồ thị hàm số y = f'(x) có đồ thị như hình vẽ dưới. Phương trình fx=m  , với m là tham số có nhiều nhất là bao nhiêu nghiệm?

Cho hàm số y = f(x) có đạo hàm liên tục trên R  . Biết f(0) = 0 và đồ thị hàm số y = f'(x) có đồ thị như hình vẽ dưới (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Cách 1. Gọi phương trình y=f'(x) có dạng y=g(x)=ax3+bx2+cx+3 , khi đó ta có 

g(1)=0g(3)=0g'(1)=0a+b+c+3=027a+9b+3c+3=03a+2b+c=0a+b+c=39a+3b+c=13a+2b+c=0a=1b=5c=7

y=f'(x)=x3+5x27x+3

Lấy nguyên hàm f'(x) ta được 

x3+5x27x+3dx=14x4+53x372x2+3x+C=f(x)

f(0)=0C=0y=f(x)=14x4+53x372x2+3x . Ta có bảng biến thiên

Cho hàm số y = f(x) có đạo hàm liên tục trên R  . Biết f(0) = 0 và đồ thị hàm số y = f'(x) có đồ thị như hình vẽ dưới (ảnh 2)

Từ đồ thị hàm số y=f(x)  ta suy ra được đồ thị hàm số y=fx

Do đó phương trình fx=m có nhiều nhất là 6 nghiệm.

Cách 2.

Từ đồ thị ta có bảng biến thiên

Cho hàm số y = f(x) có đạo hàm liên tục trên R  . Biết f(0) = 0 và đồ thị hàm số y = f'(x) có đồ thị như hình vẽ dưới (ảnh 3)

Từ đồ thị hàm số y = f (x) ta suy ra được đồ thị hàm số y=fx

Do đó phương trìnhfx=m có nhiều nhất là 6 nghiệm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án B

Cách 1. Xét hàm số g(x) = f(x + 1), có g'(x) = f'(x + 1).

Ta có:  g'x=0f'x+1=0x+1=1x+1=0x+1=1x=2x=1x=0

Bảng biến thiên của hàm g(x)

Cho hàm số y = f(x) có bảng biến thiên như hình vẽ bên dưới . Hàm số g(x) = f (x +1) đạt cực tiểu tại (ảnh 2)


Từ bảng biến thiên của hàm g(x), ta thấy hàm số g(x) = f(x +1) đạt cực tiểu tại x = -1. 

Cách 2. Đồ thị hàm số g(x) có được bằng cách tịnh tiến đồ thị hàm số f(x) sang trái 1 đơn vị, mà đồ thị hàm số f(x) đạt cực tiểu tại x = 0 nên hàm số g(x) = f(x +1) đạt cực tiểu tại x = -1.

Lời giải

Đáp án A

Kẻ AH vuông góc BC khi đó ta có: BC=a3;SH=a113;AH=a63;SA=a53

Thể tích của khối chóp S.ABC là VS.ABC=13SA.SΔABC=a53.a222=a31018

Suy ra dA,SBC=3VS.ABCVΔSBC=a33033.

Cho hình chóp S.ABC có SA, AB, AC đôi một vuông góc, AB = a,AC = a căn bặc 2 của 2 và diện tích tam giác SBC bằng a^2. căn bậc 2 của 33 /6  . Khoảng cách từ điểm A đến măt phẳng (SBC) bằng (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay