Câu hỏi:
15/01/2020 1,188Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác cân với AB = AC = a; BAC=120º và AA’ = a. Gọi I là trung điểm của CC' (như hình vẽ). Tính cosin của góc tạo bởi hai mặt phẳng (ABC) và (AB’I).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án A
Gắn hệ trục tọa độ Oxyz như hình vẽ
Vecto pháp tuyến của mặt phẳng
Vecto pháp tuyến của mặt phẳng (AB’I) là
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình nón đỉnh S, đáy là đường tròn (0; 5). Một mặt phẳng đi qua đỉnh của hình nón cắt đường tròn đáy tại hai điểm A và B sao cho SA = AB = 8. Tính khoảng cách từ O đến (SAB).
Câu 2:
Cho hình chóp S.ABCD có đáy ABCD là một tứ giác (AB không song song CD). Gọi N là trung điểm của SD, M là trung điểm nằm trên cạnh SB sao cho SM = 2MB, O là giao điểm của AC và BD. Cặp đường thẳng nào sau đây cắt nhau.
Câu 3:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, E là trung điểm của SA, F, G lần lượt là các điểm thuộc cạnh BC, CD (CF<FB; GC<GD). Thiết diện của hình chóp cắt bởi (EFG) là :
Câu 4:
Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh bằng 1. Cạnh bên SA vuông góc với mặt phẳng ABCD và SC = . Tính thể tích khối chóp S. ABCD
Câu 5:
Cho hình chóp đều S.ABCD có độ dài cạnh đáy bằng a. Gọi G là trọng tâm tam giác SAC. Mặt phẳng chứa AB và đi qua G cắt các cạnh, SC SD lần lượt tại M và N. Biết mặt bên của hình chóp tạo với đáy một góc bằng . Thể tích khối chóp S. ABMN bằng
Câu 6:
Cho hình chóp S.ABC. Gọi M, N lần lượt là trung điểm của SA và BC. P là điểm nằm trên cạnh AB sao cho . Gọi Q là giao điểm của SC với mặt phẳng (MNP). Tính
Câu 7:
Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh a, BCD = và AA' = . Hình chiếu vuông góc của A’ lên mặt phẳng ABCD trùng với giao điểm của AC và BD. Tính theo a thể tích khối hộp ABCD.A’B’C’D’.
về câu hỏi!