Cho hàm số Khẳng định nào sau đây là đúng?
Cho hàm số Khẳng định nào sau đây là đúng?
A. Hàm số chỉ có đúng hai điểm cực trị.
B. Hàm số không có cực trị.
Quảng cáo
Trả lời:

Phương pháp:
- Tìm đạo hàm của hàm số.
- Tìm nghiệm phương trình y' = 0.
Cách giải:
Ta có
Vậy hàm số đã cho có 3 điểm cực trị.
Chọn C.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương pháp:
Áp dụng công thức tính tổ hợp.
Cách giải:
Số tập con có 3 phần tử của tập hợp 7 phần tử là
Chọn D.
Lời giải
Phương pháp:
Lập bảng biến thiên của hàm số y = f(x) và y = g(x).
Cách giải:
Dựa vào đồ thị hàm số ta có bảng biến thiên của y = f(x) như sau:

Đặt ta có:
Hàm số y = h(x) có 3 điểm cực trị Hàm số y = h(x) + m cũng có 3 điểm cực trị.
Vì số điểm cực trị của hàm số bằng tổng số điểm cực trị của hàm số y = h(x) + m và số giao điểm của đồ thị hàm số y = h(x) + m với trục hoành (không tính tiếp xúc).
Nên để hàm số có 5 điểm cực trị thì phương trình h(x) = 0 có 2 nghiệm phân biệt (không tính nghiệm kép).
Bảng biến thiên hàm số h(x) như sau:

với
Nếu h(c) > 5 thì phương trình h(x) = -m có 2 nghiệm phân biệt (không tính nghiệm kép)
(không thỏa mãn ).
Nếu thì phương trình h(x) = -m có 2 nghiệm phân biệt (không tính nghiệm kép)
(thỏa mãn ).
Mà
Vậy có 10 giá trị nguyên của m thỏa mãn yêu cầu bài toán.
Chọn A.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.